Spaces:
Runtime error
Runtime error
Commit
·
5b9202b
1
Parent(s):
c6590a6
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import pipeline
|
5 |
+
from diffusers import StableDiffusionDepth2ImgPipeline, StableDiffusionPipeline, StableDiffusionControlNetPipeline, StableDiffusionUpscalePipeline, StableDiffusionImg2ImgPipeline, AutoPipelineForImage2Image
|
6 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler, DPMSolverMultistepScheduler
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from controlnet_aux import HEDdetector
|
10 |
+
from diffusers.utils import load_image
|
11 |
+
from huggingface_hub import notebook_login, login
|
12 |
+
import concurrent.futures
|
13 |
+
from threading import Thread
|
14 |
+
|
15 |
+
hidden_booster_text = "beautiful face, beautiful hand, small boobs, a cup"
|
16 |
+
hidden_negative = "big boobs, huge boobs, sexy, dirty, d cup, e cup, g cup, slutty, badhandv4, ng_deepnegative_v1_75t, worst quality, low quality, extra digits, text, signature, bad anatomy, mutated hand, error, missing finger, cropped, worse quality, bad quality, lowres, floating limbs, bad hands, anatomical nonsense"
|
17 |
+
|
18 |
+
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
19 |
+
|
20 |
+
controlnet_scribble = ControlNetModel.from_pretrained(
|
21 |
+
"lllyasviel/sd-controlnet-scribble", torch_dtype=torch.float16
|
22 |
+
)
|
23 |
+
|
24 |
+
pipe_scribble = StableDiffusionControlNetPipeline.from_single_file(
|
25 |
+
"https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors", controlnet=controlnet_scribble,
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
)
|
28 |
+
|
29 |
+
pipe_scribble.load_textual_inversion("shellypeng/bad-prompt")
|
30 |
+
pipe_scribble.load_textual_inversion("shellypeng/badhandv4")
|
31 |
+
# pipe.load_textual_inversion("shellypeng/easynegative")
|
32 |
+
pipe_scribble.load_textual_inversion("shellypeng/deepnegative")
|
33 |
+
pipe_scribble.load_textual_inversion("shellypeng/verybadimagenegative")
|
34 |
+
pipe_scribble.scheduler = DPMSolverMultistepScheduler.from_config(pipe_scribble.scheduler.config, use_karras_sigmas=True)
|
35 |
+
# pipe.enable_model_cpu_offload()
|
36 |
+
def dummy(images, **kwargs):
|
37 |
+
return images, False
|
38 |
+
pipe_scribble.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
|
39 |
+
pipe_scribble.to("cuda")
|
40 |
+
|
41 |
+
def scribble_to_image(text, input_img):
|
42 |
+
"""
|
43 |
+
pass the sd model and do scribble to image
|
44 |
+
include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
|
45 |
+
expression to improve hand)
|
46 |
+
"""
|
47 |
+
# change param "bag" below to text, image param below to input_img
|
48 |
+
input_img = Image.fromarray(input_img)
|
49 |
+
input_img = hed(input_img, scribble=True)
|
50 |
+
input_img = load_image(input_img)
|
51 |
+
# global prompt
|
52 |
+
prompt = text + hidden_booster_text
|
53 |
+
res_image0 = pipe_scribble(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
|
54 |
+
res_image1 = pipe_scribble(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
|
55 |
+
res_image2 = pipe_scribble(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
|
56 |
+
res_image3 = pipe_scribble(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
|
57 |
+
|
58 |
+
return res_image0, res_image1, res_image2, res_image3
|
59 |
+
|
60 |
+
theme = gr.themes.Soft(
|
61 |
+
primary_hue="orange",
|
62 |
+
secondary_hue="orange",
|
63 |
+
).set(
|
64 |
+
block_background_fill='*primary_50'
|
65 |
+
)
|
66 |
+
|
67 |
+
pipe_img2img = StableDiffusionImg2ImgPipeline.from_single_file("https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors",
|
68 |
+
torch_dtype=torch.float16)
|
69 |
+
pipe_img2img.load_lora_weights("shellypeng/detail-tweaker")
|
70 |
+
pipe_img2img.fuse_lora(lora_scale=0.1)
|
71 |
+
pipe_img2img.load_textual_inversion("shellypeng/bad-prompt")
|
72 |
+
pipe_img2img.load_textual_inversion("shellypeng/badhandv4")
|
73 |
+
# pipe.load_textual_inversion("shellypeng/easynegative")
|
74 |
+
pipe_img2img.load_textual_inversion("shellypeng/deepnegative")
|
75 |
+
pipe_img2img.load_textual_inversion("shellypeng/verybadimagenegative")
|
76 |
+
pipe_img2img.scheduler = DPMSolverMultistepScheduler.from_config(pipe_img2img.scheduler.config, use_karras_sigmas=True)
|
77 |
+
# pipe.enable_model_cpu_offload()
|
78 |
+
def dummy(images, **kwargs):
|
79 |
+
return images, False
|
80 |
+
pipe_img2img.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
|
81 |
+
pipe_img2img = pipe_img2img.to("cuda")
|
82 |
+
|
83 |
+
def real_img2img_to_anime(text, input_img):
|
84 |
+
"""
|
85 |
+
pass the sd model and do scribble to image
|
86 |
+
include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
|
87 |
+
expression to improve hand)
|
88 |
+
"""
|
89 |
+
input_img = Image.fromarray(input_img)
|
90 |
+
input_img = load_image(input_img)
|
91 |
+
prompt = text + hidden_booster_text
|
92 |
+
# input_img = depth_estimator(input_img)['depth']
|
93 |
+
res_image0 = pipe_img2img(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
|
94 |
+
res_image1 = pipe_img2img(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
|
95 |
+
res_image2 = pipe_img2img(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
|
96 |
+
res_image3 = pipe_img2img(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
|
97 |
+
|
98 |
+
return res_image0, res_image1, res_image2, res_image3
|
99 |
+
|
100 |
+
|
101 |
+
theme = gr.themes.Soft(
|
102 |
+
primary_hue="orange",
|
103 |
+
secondary_hue="orange",
|
104 |
+
).set(
|
105 |
+
block_background_fill='*primary_50'
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
generator = torch.manual_seed(33)
|
110 |
+
|
111 |
+
with gr.Blocks(theme=theme, css="footer {visibility: hidden}", title="ShellAI Apps") as iface:
|
112 |
+
with gr.Tab("Animefier"):
|
113 |
+
with gr.Row(equal_height=True):
|
114 |
+
with gr.Column():
|
115 |
+
prompt_box = gr.Textbox(label="Prompt", placeholder="Enter a prompt")
|
116 |
+
image_box = gr.Image(label="Input Image", height=350)
|
117 |
+
gen_btn = gr.Button(value="Generate")
|
118 |
+
with gr.Row(equal_height=True):
|
119 |
+
global image1
|
120 |
+
global image2
|
121 |
+
global image3
|
122 |
+
global image4
|
123 |
+
image1 = gr.Image()
|
124 |
+
image2 = gr.Image()
|
125 |
+
image3 = gr.Image()
|
126 |
+
image4 = gr.Image()
|
127 |
+
|
128 |
+
def mult_thread(prompt_box, image_box):
|
129 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
|
130 |
+
future = executor.submit(real_img2img_to_anime, prompt_box, image_box)
|
131 |
+
image1, image2, image3, image4 = future.result()
|
132 |
+
return image1, image2, image3, image4
|
133 |
+
|
134 |
+
gen_btn.click(mult_thread, [prompt_box, image_box], [image1, image2, image3, image4])
|
135 |
+
with gr.Tab("AniSketch"):
|
136 |
+
with gr.Row(equal_height=True):
|
137 |
+
with gr.Column():
|
138 |
+
prompt_box = gr.Textbox(label="Prompt", placeholder="Enter a prompt")
|
139 |
+
image_box = gr.Image(label="Input Image", height=350)
|
140 |
+
gen_btn = gr.Button(value="Generate")
|
141 |
+
with gr.Row(equal_height=True):
|
142 |
+
image1 = gr.Image()
|
143 |
+
image2 = gr.Image()
|
144 |
+
image3 = gr.Image()
|
145 |
+
image4 = gr.Image()
|
146 |
+
|
147 |
+
def mult_thread(prompt_box, image_box):
|
148 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
|
149 |
+
future = executor.submit(scribble_to_image, prompt_box, image_box)
|
150 |
+
image1, image2, image3, image4 = future.result()
|
151 |
+
return image1, image2, image3, image4
|
152 |
+
|
153 |
+
gen_btn.click(mult_thread, [prompt_box, image_box], [image1, image2, image3, image4])
|
154 |
+
|
155 |
+
iface.launch(inline=False)
|
156 |
+
|
157 |
+
|
158 |
+
|