Spaces:
Runtime error
Runtime error
Commit
·
5b9202b
1
Parent(s):
c6590a6
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
from diffusers import StableDiffusionDepth2ImgPipeline, StableDiffusionPipeline, StableDiffusionControlNetPipeline, StableDiffusionUpscalePipeline, StableDiffusionImg2ImgPipeline, AutoPipelineForImage2Image
|
| 6 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler, DPMSolverMultistepScheduler
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
from controlnet_aux import HEDdetector
|
| 10 |
+
from diffusers.utils import load_image
|
| 11 |
+
from huggingface_hub import notebook_login, login
|
| 12 |
+
import concurrent.futures
|
| 13 |
+
from threading import Thread
|
| 14 |
+
|
| 15 |
+
hidden_booster_text = "beautiful face, beautiful hand, small boobs, a cup"
|
| 16 |
+
hidden_negative = "big boobs, huge boobs, sexy, dirty, d cup, e cup, g cup, slutty, badhandv4, ng_deepnegative_v1_75t, worst quality, low quality, extra digits, text, signature, bad anatomy, mutated hand, error, missing finger, cropped, worse quality, bad quality, lowres, floating limbs, bad hands, anatomical nonsense"
|
| 17 |
+
|
| 18 |
+
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
| 19 |
+
|
| 20 |
+
controlnet_scribble = ControlNetModel.from_pretrained(
|
| 21 |
+
"lllyasviel/sd-controlnet-scribble", torch_dtype=torch.float16
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
pipe_scribble = StableDiffusionControlNetPipeline.from_single_file(
|
| 25 |
+
"https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors", controlnet=controlnet_scribble,
|
| 26 |
+
torch_dtype=torch.float16,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
pipe_scribble.load_textual_inversion("shellypeng/bad-prompt")
|
| 30 |
+
pipe_scribble.load_textual_inversion("shellypeng/badhandv4")
|
| 31 |
+
# pipe.load_textual_inversion("shellypeng/easynegative")
|
| 32 |
+
pipe_scribble.load_textual_inversion("shellypeng/deepnegative")
|
| 33 |
+
pipe_scribble.load_textual_inversion("shellypeng/verybadimagenegative")
|
| 34 |
+
pipe_scribble.scheduler = DPMSolverMultistepScheduler.from_config(pipe_scribble.scheduler.config, use_karras_sigmas=True)
|
| 35 |
+
# pipe.enable_model_cpu_offload()
|
| 36 |
+
def dummy(images, **kwargs):
|
| 37 |
+
return images, False
|
| 38 |
+
pipe_scribble.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
|
| 39 |
+
pipe_scribble.to("cuda")
|
| 40 |
+
|
| 41 |
+
def scribble_to_image(text, input_img):
|
| 42 |
+
"""
|
| 43 |
+
pass the sd model and do scribble to image
|
| 44 |
+
include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
|
| 45 |
+
expression to improve hand)
|
| 46 |
+
"""
|
| 47 |
+
# change param "bag" below to text, image param below to input_img
|
| 48 |
+
input_img = Image.fromarray(input_img)
|
| 49 |
+
input_img = hed(input_img, scribble=True)
|
| 50 |
+
input_img = load_image(input_img)
|
| 51 |
+
# global prompt
|
| 52 |
+
prompt = text + hidden_booster_text
|
| 53 |
+
res_image0 = pipe_scribble(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
|
| 54 |
+
res_image1 = pipe_scribble(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
|
| 55 |
+
res_image2 = pipe_scribble(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
|
| 56 |
+
res_image3 = pipe_scribble(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
|
| 57 |
+
|
| 58 |
+
return res_image0, res_image1, res_image2, res_image3
|
| 59 |
+
|
| 60 |
+
theme = gr.themes.Soft(
|
| 61 |
+
primary_hue="orange",
|
| 62 |
+
secondary_hue="orange",
|
| 63 |
+
).set(
|
| 64 |
+
block_background_fill='*primary_50'
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
pipe_img2img = StableDiffusionImg2ImgPipeline.from_single_file("https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors",
|
| 68 |
+
torch_dtype=torch.float16)
|
| 69 |
+
pipe_img2img.load_lora_weights("shellypeng/detail-tweaker")
|
| 70 |
+
pipe_img2img.fuse_lora(lora_scale=0.1)
|
| 71 |
+
pipe_img2img.load_textual_inversion("shellypeng/bad-prompt")
|
| 72 |
+
pipe_img2img.load_textual_inversion("shellypeng/badhandv4")
|
| 73 |
+
# pipe.load_textual_inversion("shellypeng/easynegative")
|
| 74 |
+
pipe_img2img.load_textual_inversion("shellypeng/deepnegative")
|
| 75 |
+
pipe_img2img.load_textual_inversion("shellypeng/verybadimagenegative")
|
| 76 |
+
pipe_img2img.scheduler = DPMSolverMultistepScheduler.from_config(pipe_img2img.scheduler.config, use_karras_sigmas=True)
|
| 77 |
+
# pipe.enable_model_cpu_offload()
|
| 78 |
+
def dummy(images, **kwargs):
|
| 79 |
+
return images, False
|
| 80 |
+
pipe_img2img.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
|
| 81 |
+
pipe_img2img = pipe_img2img.to("cuda")
|
| 82 |
+
|
| 83 |
+
def real_img2img_to_anime(text, input_img):
|
| 84 |
+
"""
|
| 85 |
+
pass the sd model and do scribble to image
|
| 86 |
+
include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
|
| 87 |
+
expression to improve hand)
|
| 88 |
+
"""
|
| 89 |
+
input_img = Image.fromarray(input_img)
|
| 90 |
+
input_img = load_image(input_img)
|
| 91 |
+
prompt = text + hidden_booster_text
|
| 92 |
+
# input_img = depth_estimator(input_img)['depth']
|
| 93 |
+
res_image0 = pipe_img2img(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
|
| 94 |
+
res_image1 = pipe_img2img(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
|
| 95 |
+
res_image2 = pipe_img2img(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
|
| 96 |
+
res_image3 = pipe_img2img(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
|
| 97 |
+
|
| 98 |
+
return res_image0, res_image1, res_image2, res_image3
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
theme = gr.themes.Soft(
|
| 102 |
+
primary_hue="orange",
|
| 103 |
+
secondary_hue="orange",
|
| 104 |
+
).set(
|
| 105 |
+
block_background_fill='*primary_50'
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
generator = torch.manual_seed(33)
|
| 110 |
+
|
| 111 |
+
with gr.Blocks(theme=theme, css="footer {visibility: hidden}", title="ShellAI Apps") as iface:
|
| 112 |
+
with gr.Tab("Animefier"):
|
| 113 |
+
with gr.Row(equal_height=True):
|
| 114 |
+
with gr.Column():
|
| 115 |
+
prompt_box = gr.Textbox(label="Prompt", placeholder="Enter a prompt")
|
| 116 |
+
image_box = gr.Image(label="Input Image", height=350)
|
| 117 |
+
gen_btn = gr.Button(value="Generate")
|
| 118 |
+
with gr.Row(equal_height=True):
|
| 119 |
+
global image1
|
| 120 |
+
global image2
|
| 121 |
+
global image3
|
| 122 |
+
global image4
|
| 123 |
+
image1 = gr.Image()
|
| 124 |
+
image2 = gr.Image()
|
| 125 |
+
image3 = gr.Image()
|
| 126 |
+
image4 = gr.Image()
|
| 127 |
+
|
| 128 |
+
def mult_thread(prompt_box, image_box):
|
| 129 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
|
| 130 |
+
future = executor.submit(real_img2img_to_anime, prompt_box, image_box)
|
| 131 |
+
image1, image2, image3, image4 = future.result()
|
| 132 |
+
return image1, image2, image3, image4
|
| 133 |
+
|
| 134 |
+
gen_btn.click(mult_thread, [prompt_box, image_box], [image1, image2, image3, image4])
|
| 135 |
+
with gr.Tab("AniSketch"):
|
| 136 |
+
with gr.Row(equal_height=True):
|
| 137 |
+
with gr.Column():
|
| 138 |
+
prompt_box = gr.Textbox(label="Prompt", placeholder="Enter a prompt")
|
| 139 |
+
image_box = gr.Image(label="Input Image", height=350)
|
| 140 |
+
gen_btn = gr.Button(value="Generate")
|
| 141 |
+
with gr.Row(equal_height=True):
|
| 142 |
+
image1 = gr.Image()
|
| 143 |
+
image2 = gr.Image()
|
| 144 |
+
image3 = gr.Image()
|
| 145 |
+
image4 = gr.Image()
|
| 146 |
+
|
| 147 |
+
def mult_thread(prompt_box, image_box):
|
| 148 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
|
| 149 |
+
future = executor.submit(scribble_to_image, prompt_box, image_box)
|
| 150 |
+
image1, image2, image3, image4 = future.result()
|
| 151 |
+
return image1, image2, image3, image4
|
| 152 |
+
|
| 153 |
+
gen_btn.click(mult_thread, [prompt_box, image_box], [image1, image2, image3, image4])
|
| 154 |
+
|
| 155 |
+
iface.launch(inline=False)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
|