Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
"""Copy of Anime_Pack_Gradio.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/1RxVCwOkq3Q5qlEkQxhFGeUxICBujjEjR | |
""" | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en") | |
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-zh-en") | |
# from retrying import retry | |
from transformers import CLIPTextModel, CLIPTokenizer, BertTokenizer, BertForSequenceClassification, ChineseCLIPProcessor, ChineseCLIPModel, AutoModel | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler, DPMSolverMultistepScheduler, StableDiffusionImg2ImgPipeline | |
import torch | |
from controlnet_aux import HEDdetector | |
from diffusers.utils import load_image | |
import concurrent.futures | |
from threading import Thread | |
from compel import Compel | |
device="cuda" if torch.cuda.is_available() else "cpu" | |
hidden_booster_text = "beautiful face, small boobs, a cup" | |
hidden_negative = "big boobs, huge boobs, sexy, dirty, d cup, e cup, g cup, slutty, badhandv4, ng_deepnegative_v1_75t, worst quality, low quality, extra digits, text, signature, bad anatomy, mutated hand, error, missing finger, cropped, worse quality, bad quality, lowres, floating limbs, bad hands, anatomical nonsense" | |
hidden_cn_booster_text = "漂亮的脸,小胸,贫乳,a罩杯" | |
hidden_cn_negative = "大胸, ,, !, 。, ;,巨乳,性感,脏,d罩杯,e罩杯,g罩杯,骚,骚气,badhandv4, ng_deepnegative_v1_75t" | |
def translate(prompt): | |
trans_text = prompt | |
translated = model.generate(**tokenizer(trans_text, return_tensors="pt", padding=True)) | |
tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] | |
tgt_text = ''.join(tgt_text)[:-1] | |
return tgt_text | |
from PIL import Image | |
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet') | |
controlnet_scribble = ControlNetModel.from_pretrained( | |
"lllyasviel/sd-controlnet-scribble", torch_dtype=torch.float16 | |
) | |
pipe_scribble = StableDiffusionControlNetPipeline.from_single_file( | |
"https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors", controlnet=controlnet_scribble, | |
torch_dtype=torch.float16, | |
) | |
# pipe.load_lora_weights("shellypeng/detail-tweaker") | |
# pipe.load_lora_weights("shellypeng/midjourney-anime") | |
# pipe.load_lora_weights("shellypeng/animetarot") | |
# pipe.load_lora_weights("shellypeng/anime-stickers-v3") | |
# pipe.load_lora_weights("shellypeng/anime-magazine") | |
# pipe_img2img.load_lora_weights("yenojunie/slit-pupils") | |
# pipe_scribble.load_lora_weights("shellypeng/detail-tweaker") | |
# pipe_scribble.fuse_lora(lora_scale=0.1) | |
# pipe_scribble.load_lora_weights("shellypeng/lora-eyes") | |
# pipe_scribble.fuse_lora(lora_scale=0.1) | |
# pipe_scribble.load_lora_weights("shellypeng/beautiful-eyes") | |
# pipe_scribble.fuse_lora(lora_scale=0.1) | |
pipe_scribble.load_textual_inversion("shellypeng/bad-prompt") | |
pipe_scribble.load_textual_inversion("shellypeng/badhandv4") | |
# pipe.load_textual_inversion("shellypeng/easynegative") | |
pipe_scribble.load_textual_inversion("shellypeng/deepnegative") | |
pipe_scribble.load_textual_inversion("shellypeng/verybadimagenegative") | |
pipe_scribble.scheduler = DPMSolverMultistepScheduler.from_config(pipe_scribble.scheduler.config, use_karras_sigmas=True) | |
# pipe.enable_model_cpu_offload() | |
pipe_scribble.safety_checker = None | |
pipe_scribble.requires_safety_checker = False | |
pipe_scribble.to(device) | |
def scribble_to_image(text, input_img, chinese_check): | |
""" | |
pass the sd model and do scribble to image | |
include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial | |
expression to improve hand) | |
""" | |
# change param "bag" below to text, image param below to input_img | |
input_img = Image.fromarray(input_img) | |
input_img = hed(input_img, scribble=True) | |
input_img = load_image(input_img) | |
# global prompt | |
compel_proc = Compel(tokenizer=pipe_scribble.tokenizer, text_encoder=pipe_scribble.text_encoder) | |
if chinese_check: | |
text = translate(text) | |
print("prompt text:", text) | |
prompt = text + hidden_booster_text | |
prompt_embeds = compel_proc(prompt) | |
res_image0 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt=hidden_negative, num_inference_steps=40).images[0] | |
res_image1 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt=hidden_negative, num_inference_steps=40).images[0] | |
res_image2 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt=hidden_negative, num_inference_steps=40).images[0] | |
res_image3 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt=hidden_negative, num_inference_steps=40).images[0] | |
return res_image0, res_image1, res_image2, res_image3 | |
from PIL import Image | |
from transformers import pipeline | |
from diffusers import StableDiffusionDepth2ImgPipeline, StableDiffusionPipeline, StableDiffusionControlNetPipeline, StableDiffusionUpscalePipeline, StableDiffusionImg2ImgPipeline, AutoPipelineForImage2Image | |
# Commented out IPython magic to ensure Python compatibility. | |
# %cd /content/drive/MyDrive/stable-diffusion-webui-colab/stable-diffusion-webui | |
pipe_img2img = StableDiffusionImg2ImgPipeline.from_single_file("https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors", | |
torch_dtype=torch.float16) | |
# pipe_img2img.load_lora_weights("shellypeng/detail-tweaker") | |
# pipe_img2img.fuse_lora(lora_scale=0.1) | |
# pipe_img2img.load_lora_weights("shellypeng/lora-eyes") | |
# pipe_img2img.fuse_lora(lora_scale=0.1) | |
# pipe_img2img.load_lora_weights("shellypeng/beautiful-eyes") | |
# pipe_img2img.fuse_lora(lora_scale=0.1) | |
pipe_img2img.load_textual_inversion("shellypeng/bad-prompt") | |
pipe_img2img.load_textual_inversion("shellypeng/badhandv4") | |
# pipe.load_textual_inversion("shellypeng/easynegative") | |
pipe_img2img.load_textual_inversion("shellypeng/deepnegative") | |
pipe_img2img.load_textual_inversion("shellypeng/verybadimagenegative") | |
pipe_img2img.scheduler = DPMSolverMultistepScheduler.from_config(pipe_img2img.scheduler.config, use_karras_sigmas=True) | |
# pipe.enable_model_cpu_offload() | |
pipe_img2img.safety_checker = None | |
pipe_img2img.requires_safety_checker = False | |
pipe_img2img.to(device) | |
def real_img2img_to_anime(text, input_img, chinese_check): | |
""" | |
pass the sd model and do scribble to image | |
include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial | |
expression to improve hand) | |
""" | |
input_img = Image.fromarray(input_img) | |
input_img = load_image(input_img) | |
compel_proc = Compel(tokenizer=pipe_scribble.tokenizer, text_encoder=pipe_scribble.text_encoder) | |
if chinese_check: | |
text = translate(text) | |
print("prompt text:", text) | |
prompt = text + hidden_booster_text | |
prompt_embeds = compel_proc(prompt) | |
res_image0 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt=hidden_negative, num_inference_steps=40).images[0] | |
res_image1 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt=hidden_negative, num_inference_steps=40).images[0] | |
res_image2 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt=hidden_negative, num_inference_steps=40).images[0] | |
res_image3 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt=hidden_negative, num_inference_steps=40).images[0] | |
return res_image0, res_image1, res_image2, res_image3 | |
theme = gr.themes.Soft( | |
primary_hue="orange", | |
secondary_hue="orange", | |
).set( | |
block_background_fill='*primary_50' | |
) | |
from transformers import pipeline | |
text = [ | |
"Brevity is the soul of wit.", | |
"Amor, ch'a nullo amato amar perdona." | |
] | |
model_ckpt = "papluca/xlm-roberta-base-language-detection" | |
pipe = pipeline("text-classification", model=model_ckpt) | |
pipe(text, top_k=1, truncation=True) | |
with gr.Blocks(theme=theme, css="footer {visibility: hidden}", title="ShellAI Apps") as iface: | |
with gr.Tab("Animefier"): | |
with gr.Row(equal_height=True): | |
with gr.Column(): | |
with gr.Row(equal_height=True): | |
prompt_box = gr.Textbox(label="Prompt", placeholder="Enter a prompt", scale=1) | |
chinese_check = gr.Checkbox(label="Chinese Prompt Mode", info="Click here to enable Chinese Prompting(点此触发中文提示词输入)", scale=0.3) | |
image_box = gr.Image(label="Input Image", height=350) | |
gen_btn = gr.Button(value="Generate") | |
with gr.Row(equal_height=True): | |
global image1 | |
global image2 | |
global image3 | |
global image4 | |
image1 = gr.Image() | |
image2 = gr.Image() | |
image3 = gr.Image() | |
image4 = gr.Image() | |
def mult_thread(prompt_box, image_box, chinese_check): | |
with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor: | |
future = executor.submit(real_img2img_to_anime, prompt_box, image_box, chinese_check) | |
image1, image2, image3, image4 = future.result() | |
return image1, image2, image3, image4 | |
gen_btn.click(mult_thread, [prompt_box, image_box, chinese_check], [image1, image2, image3, image4]) | |
with gr.Tab("AniSketch"): | |
with gr.Row(equal_height=True): | |
with gr.Column(): | |
with gr.Row(equal_height=True): | |
prompt_box = gr.Textbox(label="Prompt", placeholder="Enter a prompt", scale=1) | |
chinese_check = gr.Checkbox(label="Chinese Prompt Mode", info="Click here to enable Chinese Prompting(点此触发中文提示词输入)", scale=0.3) | |
image_box = gr.Image(label="Input Image", height=350) | |
gen_btn = gr.Button(value="Generate") | |
with gr.Row(equal_height=True): | |
image1 = gr.Image() | |
image2 = gr.Image() | |
image3 = gr.Image() | |
image4 = gr.Image() | |
def mult_thread(prompt_box, image_box, chinese_check): | |
with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor: | |
future = executor.submit(scribble_to_image, prompt_box, image_box, chinese_check) | |
image1, image2, image3, image4 = future.result() | |
return image1, image2, image3, image4 | |
gen_btn.click(mult_thread, [prompt_box, image_box, chinese_check], [image1, image2, image3, image4]) | |
iface.launch(debug=True, share=True) | |