Spaces:
Runtime error
Runtime error
File size: 10,931 Bytes
4bae37e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# -*- coding: utf-8 -*-
"""Copy of Anime_Pack_Gradio.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1RxVCwOkq3Q5qlEkQxhFGeUxICBujjEjR
"""
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
# from retrying import retry
from transformers import CLIPTextModel, CLIPTokenizer, BertTokenizer, BertForSequenceClassification, ChineseCLIPProcessor, ChineseCLIPModel, AutoModel
import gradio as gr
import numpy as np
from PIL import Image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler, DPMSolverMultistepScheduler, StableDiffusionImg2ImgPipeline
import torch
from controlnet_aux import HEDdetector
from diffusers.utils import load_image
import concurrent.futures
from threading import Thread
from compel import Compel
device="cuda" if torch.cuda.is_available() else "cpu"
hidden_booster_text = "beautiful face, small boobs, a cup"
hidden_negative = "big boobs, huge boobs, sexy, dirty, d cup, e cup, g cup, slutty, badhandv4, ng_deepnegative_v1_75t, worst quality, low quality, extra digits, text, signature, bad anatomy, mutated hand, error, missing finger, cropped, worse quality, bad quality, lowres, floating limbs, bad hands, anatomical nonsense"
hidden_cn_booster_text = "漂亮的脸,小胸,贫乳,a罩杯"
hidden_cn_negative = "大胸, ,, !, 。, ;,巨乳,性感,脏,d罩杯,e罩杯,g罩杯,骚,骚气,badhandv4, ng_deepnegative_v1_75t"
def translate(prompt):
trans_text = prompt
translated = model.generate(**tokenizer(trans_text, return_tensors="pt", padding=True))
tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
tgt_text = ''.join(tgt_text)[:-1]
return tgt_text
from PIL import Image
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
controlnet_scribble = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-scribble", torch_dtype=torch.float16
)
pipe_scribble = StableDiffusionControlNetPipeline.from_single_file(
"https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors", controlnet=controlnet_scribble,
torch_dtype=torch.float16,
)
# pipe.load_lora_weights("shellypeng/detail-tweaker")
# pipe.load_lora_weights("shellypeng/midjourney-anime")
# pipe.load_lora_weights("shellypeng/animetarot")
# pipe.load_lora_weights("shellypeng/anime-stickers-v3")
# pipe.load_lora_weights("shellypeng/anime-magazine")
# pipe_img2img.load_lora_weights("yenojunie/slit-pupils")
# pipe_scribble.load_lora_weights("shellypeng/detail-tweaker")
# pipe_scribble.fuse_lora(lora_scale=0.1)
# pipe_scribble.load_lora_weights("shellypeng/lora-eyes")
# pipe_scribble.fuse_lora(lora_scale=0.1)
# pipe_scribble.load_lora_weights("shellypeng/beautiful-eyes")
# pipe_scribble.fuse_lora(lora_scale=0.1)
pipe_scribble.load_textual_inversion("shellypeng/bad-prompt")
pipe_scribble.load_textual_inversion("shellypeng/badhandv4")
# pipe.load_textual_inversion("shellypeng/easynegative")
pipe_scribble.load_textual_inversion("shellypeng/deepnegative")
pipe_scribble.load_textual_inversion("shellypeng/verybadimagenegative")
pipe_scribble.scheduler = DPMSolverMultistepScheduler.from_config(pipe_scribble.scheduler.config, use_karras_sigmas=True)
# pipe.enable_model_cpu_offload()
pipe_scribble.safety_checker = None
pipe_scribble.requires_safety_checker = False
pipe_scribble.to(device)
def scribble_to_image(text, input_img, chinese_check):
"""
pass the sd model and do scribble to image
include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
expression to improve hand)
"""
# change param "bag" below to text, image param below to input_img
input_img = Image.fromarray(input_img)
input_img = hed(input_img, scribble=True)
input_img = load_image(input_img)
# global prompt
compel_proc = Compel(tokenizer=pipe_scribble.tokenizer, text_encoder=pipe_scribble.text_encoder)
if chinese_check:
text = translate(text)
print("prompt text:", text)
prompt = text + hidden_booster_text
prompt_embeds = compel_proc(prompt)
res_image0 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
res_image1 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
res_image2 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
res_image3 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
return res_image0, res_image1, res_image2, res_image3
from PIL import Image
from transformers import pipeline
from diffusers import StableDiffusionDepth2ImgPipeline, StableDiffusionPipeline, StableDiffusionControlNetPipeline, StableDiffusionUpscalePipeline, StableDiffusionImg2ImgPipeline, AutoPipelineForImage2Image
# Commented out IPython magic to ensure Python compatibility.
# %cd /content/drive/MyDrive/stable-diffusion-webui-colab/stable-diffusion-webui
pipe_img2img = StableDiffusionImg2ImgPipeline.from_single_file("https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors",
torch_dtype=torch.float16)
# pipe_img2img.load_lora_weights("shellypeng/detail-tweaker")
# pipe_img2img.fuse_lora(lora_scale=0.1)
# pipe_img2img.load_lora_weights("shellypeng/lora-eyes")
# pipe_img2img.fuse_lora(lora_scale=0.1)
# pipe_img2img.load_lora_weights("shellypeng/beautiful-eyes")
# pipe_img2img.fuse_lora(lora_scale=0.1)
pipe_img2img.load_textual_inversion("shellypeng/bad-prompt")
pipe_img2img.load_textual_inversion("shellypeng/badhandv4")
# pipe.load_textual_inversion("shellypeng/easynegative")
pipe_img2img.load_textual_inversion("shellypeng/deepnegative")
pipe_img2img.load_textual_inversion("shellypeng/verybadimagenegative")
pipe_img2img.scheduler = DPMSolverMultistepScheduler.from_config(pipe_img2img.scheduler.config, use_karras_sigmas=True)
# pipe.enable_model_cpu_offload()
pipe_img2img.safety_checker = None
pipe_img2img.requires_safety_checker = False
pipe_img2img.to(device)
def real_img2img_to_anime(text, input_img, chinese_check):
"""
pass the sd model and do scribble to image
include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
expression to improve hand)
"""
input_img = Image.fromarray(input_img)
input_img = load_image(input_img)
compel_proc = Compel(tokenizer=pipe_scribble.tokenizer, text_encoder=pipe_scribble.text_encoder)
if chinese_check:
text = translate(text)
print("prompt text:", text)
prompt = text + hidden_booster_text
prompt_embeds = compel_proc(prompt)
res_image0 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
res_image1 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
res_image2 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
res_image3 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
return res_image0, res_image1, res_image2, res_image3
theme = gr.themes.Soft(
primary_hue="orange",
secondary_hue="orange",
).set(
block_background_fill='*primary_50'
)
from transformers import pipeline
text = [
"Brevity is the soul of wit.",
"Amor, ch'a nullo amato amar perdona."
]
model_ckpt = "papluca/xlm-roberta-base-language-detection"
pipe = pipeline("text-classification", model=model_ckpt)
pipe(text, top_k=1, truncation=True)
with gr.Blocks(theme=theme, css="footer {visibility: hidden}", title="ShellAI Apps") as iface:
with gr.Tab("Animefier"):
with gr.Row(equal_height=True):
with gr.Column():
with gr.Row(equal_height=True):
prompt_box = gr.Textbox(label="Prompt", placeholder="Enter a prompt", scale=1)
chinese_check = gr.Checkbox(label="Chinese Prompt Mode", info="Click here to enable Chinese Prompting(点此触发中文提示词输入)", scale=0.3)
image_box = gr.Image(label="Input Image", height=350)
gen_btn = gr.Button(value="Generate")
with gr.Row(equal_height=True):
global image1
global image2
global image3
global image4
image1 = gr.Image()
image2 = gr.Image()
image3 = gr.Image()
image4 = gr.Image()
def mult_thread(prompt_box, image_box, chinese_check):
with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
future = executor.submit(real_img2img_to_anime, prompt_box, image_box, chinese_check)
image1, image2, image3, image4 = future.result()
return image1, image2, image3, image4
gen_btn.click(mult_thread, [prompt_box, image_box, chinese_check], [image1, image2, image3, image4])
with gr.Tab("AniSketch"):
with gr.Row(equal_height=True):
with gr.Column():
with gr.Row(equal_height=True):
prompt_box = gr.Textbox(label="Prompt", placeholder="Enter a prompt", scale=1)
chinese_check = gr.Checkbox(label="Chinese Prompt Mode", info="Click here to enable Chinese Prompting(点此触发中文提示词输入)", scale=0.3)
image_box = gr.Image(label="Input Image", height=350)
gen_btn = gr.Button(value="Generate")
with gr.Row(equal_height=True):
image1 = gr.Image()
image2 = gr.Image()
image3 = gr.Image()
image4 = gr.Image()
def mult_thread(prompt_box, image_box, chinese_check):
with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
future = executor.submit(scribble_to_image, prompt_box, image_box, chinese_check)
image1, image2, image3, image4 = future.result()
return image1, image2, image3, image4
gen_btn.click(mult_thread, [prompt_box, image_box, chinese_check], [image1, image2, image3, image4])
iface.launch(debug=True, share=True)
|