Spaces:
Runtime error
Runtime error
File size: 17,202 Bytes
4bae37e e6e7ba3 4bae37e e6e7ba3 4bae37e 3efdcac 4bae37e e6e7ba3 3efdcac 4bae37e e6e7ba3 4bae37e e6e7ba3 4bae37e e6e7ba3 4bae37e e6e7ba3 4bae37e e6e7ba3 4bae37e e6e7ba3 4bae37e 3efdcac 4bae37e 3efdcac 4bae37e e6e7ba3 4bae37e e6e7ba3 4bae37e e6e7ba3 4bae37e e6e7ba3 4bae37e 24cead7 4bae37e e6e7ba3 4bae37e e6e7ba3 4bae37e e6e7ba3 4bae37e e6e7ba3 4bae37e e6e7ba3 4bae37e e6e7ba3 4bae37e e6e7ba3 4bae37e e6e7ba3 4bae37e e6e7ba3 3efdcac e6e7ba3 4bae37e e6e7ba3 3efdcac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
# -*- coding: utf-8 -*-
"""Copy of Anime_Pack_Gradio.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1RxVCwOkq3Q5qlEkQxhFGeUxICBujjEjR
"""
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
import gradio as gr
import numpy as np
from PIL import Image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, DPMSolverMultistepScheduler, StableDiffusionImg2ImgPipeline
import torch
from controlnet_aux import HEDdetector
from diffusers.utils import load_image
import concurrent.futures
from threading import Thread
from compel import Compel
from transformers import pipeline
model_ckpt = "papluca/xlm-roberta-base-language-detection"
pipe = pipeline("text-classification", model=model_ckpt)
device="cuda" if torch.cuda.is_available() else "cpu"
hidden_booster_text = ", loraeyes, beautiful face, small boobs, a cup"
hidden_negative = "big boobs, huge boobs, sexy, dirty, d cup, e cup, g cup, slutty, badhandv4, ng_deepnegative_v1_75t, worst quality, low quality, extra digits, text, signature, bad anatomy, mutated hand, error, missing finger, cropped, worse quality, bad quality, lowres, floating limbs, bad hands, anatomical nonsense"
hidden_cn_booster_text = ",loraeyes漂亮的脸,小胸,贫乳,a罩杯"
hidden_cn_negative = "大胸, ,, !, 。, ;,巨乳,性感,脏,d罩杯,e罩杯,g罩杯,骚,骚气,badhandv4, ng_deepnegative_v1_75t"
def translate(prompt):
trans_text = prompt
translated = model.generate(**tokenizer(trans_text, return_tensors="pt", padding=True))
tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
tgt_text = ''.join(tgt_text)[:-1]
return tgt_text
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
controlnet_scribble = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-scribble", torch_dtype=torch.float16, safety_checker=None, requires_safety_checker=False, )
pipe_scribble = StableDiffusionControlNetPipeline.from_single_file(
"https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors", controlnet=controlnet_scribble, safety_checker=None, requires_safety_checker=False,
torch_dtype=torch.float16,
)
# pipe.load_lora_weights("shellypeng/detail-tweaker")
# pipe.load_lora_weights("shellypeng/midjourney-anime")
# pipe.load_lora_weights("shellypeng/animetarot")
# pipe.load_lora_weights("shellypeng/anime-stickers-v3")
# pipe.load_lora_weights("shellypeng/anime-magazine")
# pipe_img2img.load_lora_weights("yenojunie/slit-pupils")
# pipe_scribble.load_lora_weights("shellypeng/detail-tweaker")
# pipe_scribble.fuse_lora(lora_scale=0.1)
pipe_scribble.load_lora_weights("shellypeng/lora-eyes")
pipe_scribble.fuse_lora(lora_scale=0.1)
# pipe_scribble.load_lora_weights("shellypeng/beautiful-eyes")
# pipe_scribble.fuse_lora(lora_scale=0.1)
pipe_scribble.load_textual_inversion("shellypeng/bad-prompt")
pipe_scribble.load_textual_inversion("shellypeng/badhandv4")
# pipe.load_textual_inversion("shellypeng/easynegative")
pipe_scribble.load_textual_inversion("shellypeng/deepnegative")
pipe_scribble.load_textual_inversion("shellypeng/verybadimagenegative")
pipe_scribble.scheduler = DPMSolverMultistepScheduler.from_config(pipe_scribble.scheduler.config, use_karras_sigmas=True)
# pipe.enable_model_cpu_offload()
pipe_scribble.safety_checker = None
pipe_scribble.requires_safety_checker = False
pipe_scribble.to(device)
def scribble_to_image(text, neg_prompt_box, input_img):
"""
pass the sd model and do scribble to image
include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
expression to improve hand)
"""
# if auto detect detects chinese => auto turn on chinese prompting checkbox
# change param "bag" below to text, image param below to input_img
input_img = Image.fromarray(input_img)
input_img = hed(input_img, scribble=True)
input_img = load_image(input_img)
# global prompt
lang_check_label = pipe(text, top_k=1, truncation=True)[0]['label']
lang_check_score = pipe(text, top_k=1, truncation=True)[0]['score']
if lang_check_label == 'zh' and lang_check_score >= 0.85:
text = translate(text)
compel_proc = Compel(tokenizer=pipe_scribble.tokenizer, text_encoder=pipe_scribble.text_encoder)
prompt = text + hidden_booster_text
prompt_embeds = compel_proc(prompt)
negative_prompt = neg_prompt_box + hidden_negative
negative_prompt_embeds = compel_proc(negative_prompt)
res_image0 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
res_image1 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
res_image2 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
res_image3 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
return res_image0, res_image1, res_image2, res_image3
def real_img2img_to_anime(text, neg_prompt_box, input_img):
"""
pass the sd model and do scribble to image
include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
expression to improve hand)
"""
input_img = Image.fromarray(input_img)
input_img = load_image(input_img)
lang_check_label = pipe(text, top_k=1, truncation=True)[0]['label']
lang_check_score = pipe(text, top_k=1, truncation=True)[0]['score']
if lang_check_label == 'zh' and lang_check_score >= 0.85:
text = translate(text)
compel_proc = Compel(tokenizer=pipe_scribble.tokenizer, text_encoder=pipe_scribble.text_encoder)
prompt = text + hidden_booster_text
prompt_embeds = compel_proc(prompt)
negative_prompt = neg_prompt_box + hidden_negative
negative_prompt_embeds = compel_proc(negative_prompt)
# input_img = depth_estimator(input_img)['depth']
res_image0 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
res_image1 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
res_image2 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
res_image3 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
return res_image0, res_image1, res_image2, res_image3
theme = gr.themes.Soft(
primary_hue="orange",
secondary_hue="orange",
).set(
block_background_fill='*primary_50'
)
# %cd /content/drive/MyDrive/stable-diffusion-webui-colab/stable-diffusion-webui
pipe_img2img = StableDiffusionImg2ImgPipeline.from_single_file("https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors",
torch_dtype=torch.float16, safety_checker=None, requires_safety_checker=False)
# pipe_img2img.load_lora_weights("shellypeng/detail-tweaker")
# pipe_img2img.fuse_lora(lora_scale=0.1)
pipe_img2img.load_lora_weights("shellypeng/lora-eyes")
pipe_img2img.fuse_lora(lora_scale=0.1)
# pipe_img2img.load_lora_weights("shellypeng/beautiful-eyes")
# pipe_img2img.fuse_lora(lora_scale=0.1)
pipe_img2img.load_textual_inversion("shellypeng/bad-prompt")
pipe_img2img.load_textual_inversion("shellypeng/badhandv4")
# pipe.load_textual_inversion("shellypeng/easynegative")
pipe_img2img.load_textual_inversion("shellypeng/deepnegative")
pipe_img2img.load_textual_inversion("shellypeng/verybadimagenegative")
pipe_img2img.scheduler = DPMSolverMultistepScheduler.from_config(pipe_img2img.scheduler.config, use_karras_sigmas=True)
# pipe.enable_model_cpu_offload()
pipe_img2img.safety_checker = None
pipe_img2img.requires_safety_checker = False
pipe_img2img.to(device)
# pipe_img2img.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
# depth_estimator = pipeline('depth-estimation')
# controlnet_depth = ControlNetModel.from_pretrained(
# "lllyasviel/sd-controlnet-depth", torch_dtype=torch.float16
# )
# # models that worked well: anime god, pastel dream,
# # https://huggingface.co/shellypeng/featureless/tree/main
# pipe_depth = StableDiffusionControlNetPipeline.from_single_file(
# "https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors", controlnet=controlnet_depth,
# torch_dtype=torch.float16,
# )
# # pipe = StableDiffusionControlNetPipeline.from_pretrained("furusu/SSD-1B-anime",
# # torch_dtype=torch.float16
# # )
# pipe_depth.load_lora_weights("shellypeng/detail-tweaker")
# pipe_depth.fuse_lora(lora_scale=0.1)
# # pipe.load_lora_weights("shellypeng/stylized-3d")
# # pipe.load_lora_weights("shellypeng/midjourney-anime")
# # pipe.load_lora_weights("shellypeng/animetarot")
# # pipe.load_lora_weights("shellypeng/anime-stickers-v3")
# # pipe.load_lora_weights("shellypeng/anime-magazine")
# pipe_depth.load_textual_inversion("shellypeng/bad-prompt")
# pipe_depth.load_textual_inversion("shellypeng/badhandv4")
# # pipe.load_textual_inversion("shellypeng/easynegative")
# pipe_depth.load_textual_inversion("shellypeng/deepnegative")
# pipe_depth.load_textual_inversion("shellypeng/verybadimagenegative")
# pipe_depth.scheduler = DPMSolverMultistepScheduler.from_config(pipe_depth.scheduler.config, use_karras_sigmas=True)
# # pipe.enable_model_cpu_offload()
# def dummy(images, **kwargs):
# return images, False
# pipe_depth.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
# pipe_depth.to(device)
# # pipe.load_lora_weights("shellypeng/detail-tweaker", weight_name="add_detail.safetensors")
# # load textual inversion negative embeddings!!!: pipe.load_textual_inversion("sd-concepts-library/cat-toy")
# def real_to_anime(text, input_img):
# """
# pass the sd model and do scribble to image
# include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
# expression to improve hand)
# """
# input_img = Image.fromarray(input_img)
# input_img = load_image(input_img)
# input_img = depth_estimator(input_img)['depth']
# res_image0 = pipe_depth(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
# res_image1 = pipe_depth(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
# res_image2 = pipe_depth(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
# res_image3 = pipe_depth(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
# return res_image0, res_image1, res_image2, res_image3
# theme = gr.themes.Soft(
# primary_hue="orange",
# secondary_hue="orange",
# ).set(
# block_background_fill='*primary_50'
# )
def zh_prompt_info(text, neg_text, chinese_check):
can_raise_info = ""
lang_check_label = pipe(text, top_k=1, truncation=True)[0]['label']
lang_check_score = pipe(text, top_k=1, truncation=True)[0]['score']
neg_lang_check_label = pipe(neg_text, top_k=1, truncation=True)[0]['label']
neg_lang_check_score = pipe(neg_text, top_k=1, truncation=True)[0]['score']
print(lang_check_label)
if lang_check_label == 'zh' and lang_check_score >= 0.85:
if not chinese_check:
chinese_check = True
can_raise_info = "zh"
if neg_lang_check_label == 'en' and neg_lang_check_score >= 0.85:
can_raise_info = "invalid"
return True, can_raise_info
elif lang_check_label == 'en' and lang_check_score >= 0.85:
if chinese_check:
chinese_check = False
can_raise_info = "en"
if neg_lang_check_label == 'zh' and neg_lang_check_score >= 0.85:
can_raise_info = "invalid"
return False, can_raise_info
return chinese_check, can_raise_info
def mult_thread_img2img(prompt_box, neg_prompt_box, image_box):
with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
future = executor.submit(real_img2img_to_anime, prompt_box, neg_prompt_box, image_box)
image1, image2, image3, image4 = future.result()
return image1, image2, image3, image4
def mult_thread_scribble(prompt_box, neg_prompt_box, image_box):
with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
future = executor.submit(scribble_to_image, prompt_box, neg_prompt_box, image_box)
image1, image2, image3, image4 = future.result()
return image1, image2, image3, image4
def mult_thread_lang_class(prompt_box, neg_prompt_box, chinese_check):
with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
future = executor.submit(zh_prompt_info, prompt_box, neg_prompt_box, chinese_check)
chinese_check, can_raise_info = future.result()
if can_raise_info == "zh":
gr.Info("Chinese Language Detected, Switching to Chinese Prompt Mode")
elif can_raise_info == "en":
gr.Info("English Language Detected, Disabling Chinese Prompt Mode")
return chinese_check
with gr.Blocks(theme=theme, css="footer {visibility: hidden}", title="ShellAI Apps") as iface:
with gr.Tab("Animefier"):
with gr.Row(equal_height=True):
with gr.Column():
with gr.Row(equal_height=True):
with gr.Column(scale=4):
prompt_box = gr.Textbox(label="Prompt", placeholder="Enter a prompt", lines=3)
neg_prompt_box = gr.Textbox(label="Negative Prompt", placeholder="Enter a negative prompt(things you don't want to include in the generated image)", lines=3)
with gr.Row(equal_height=True):
chinese_check = gr.Checkbox(label="Chinese Prompt Mode", info="Click here to enable Chinese Prompting(点此触发中文提示词输入)")
image_box = gr.Image(label="Input Image", height=350)
gen_btn = gr.Button(value="Generate")
with gr.Row(equal_height=True):
global image1
global image2
global image3
global image4
image1 = gr.Image(label="Result 1")
image2 = gr.Image(label="Result 2")
image3 = gr.Image(label="Result 3")
image4 = gr.Image(label="Result 4")
gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_lang_class, inputs=[prompt_box, neg_prompt_box, chinese_check], outputs=[chinese_check], show_progress=False)
gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_img2img, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4])
with gr.Tab("AniSketch"):
with gr.Row(equal_height=True):
with gr.Column():
with gr.Row(equal_height=True):
with gr.Column(scale=4):
prompt_box = gr.Textbox(label="Prompt", placeholder="Enter a prompt", lines=3)
neg_prompt_box = gr.Textbox(label="Negative Prompt", placeholder="Enter a negative prompt(things you don't want to include in the generated image)", lines=3)
with gr.Row(equal_height=True):
chinese_check = gr.Checkbox(label="Chinese Prompt Mode", info="Click here to enable Chinese Prompting(点此触发中文提示词输入)")
image_box = gr.Image(label="Input Image", height=350)
gen_btn = gr.Button(value="Generate")
with gr.Row(equal_height=True):
image1 = gr.Image(label="Result 1")
image2 = gr.Image(label="Result 2")
image3 = gr.Image(label="Result 3")
image4 = gr.Image(label="Result 4")
gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_lang_class, inputs=[prompt_box, neg_prompt_box, chinese_check], outputs=[chinese_check], show_progress=False)
gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_scribble, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4])
# gen_btn.click(mult_thread, [prompt_box, image_box, chinese_check], [image1, image2, image3, image4, chinese_check])
iface.dependencies[0]["show_progress"] = "hidden"
iface.launch(debug=True, share=True, auth=["shenrym", "shjdqw%23-sw2&"])
|