File size: 17,202 Bytes
4bae37e
 
 
 
 
 
 
 
 
e6e7ba3
4bae37e
 
 
 
 
 
 
 
 
e6e7ba3
4bae37e
 
 
 
3efdcac
4bae37e
 
 
 
e6e7ba3
3efdcac
 
 
 
 
 
4bae37e
 
 
 
e6e7ba3
4bae37e
e6e7ba3
4bae37e
 
 
 
 
 
 
 
 
 
 
 
e6e7ba3
4bae37e
 
e6e7ba3
4bae37e
 
 
 
 
 
 
 
 
 
 
 
 
 
e6e7ba3
 
4bae37e
 
 
 
 
 
 
 
 
 
 
 
 
 
e6e7ba3
4bae37e
 
 
 
 
3efdcac
 
 
 
4bae37e
 
 
 
 
3efdcac
 
 
4bae37e
e6e7ba3
4bae37e
 
e6e7ba3
 
4bae37e
e6e7ba3
 
 
 
4bae37e
 
 
e6e7ba3
4bae37e
 
 
 
 
 
 
24cead7
 
 
4bae37e
 
e6e7ba3
 
4bae37e
e6e7ba3
 
 
 
 
 
 
 
4bae37e
 
 
 
 
 
 
 
 
 
 
e6e7ba3
4bae37e
e6e7ba3
 
4bae37e
e6e7ba3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bae37e
 
 
 
 
 
e6e7ba3
 
 
 
 
4bae37e
 
 
 
 
 
 
 
 
e6e7ba3
 
 
 
 
 
 
 
4bae37e
 
 
 
 
e6e7ba3
 
 
 
 
4bae37e
 
 
 
e6e7ba3
 
 
 
3efdcac
e6e7ba3
 
4bae37e
 
e6e7ba3
 
3efdcac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# -*- coding: utf-8 -*-
"""Copy of Anime_Pack_Gradio.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1RxVCwOkq3Q5qlEkQxhFGeUxICBujjEjR
"""


from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en")

model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-zh-en")

import gradio as gr
import numpy as np
from PIL import Image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, DPMSolverMultistepScheduler, StableDiffusionImg2ImgPipeline

import torch
from controlnet_aux import HEDdetector
from diffusers.utils import load_image

import concurrent.futures
from threading import Thread
from compel import Compel


from transformers import pipeline


model_ckpt = "papluca/xlm-roberta-base-language-detection"
pipe = pipeline("text-classification", model=model_ckpt)



device="cuda" if torch.cuda.is_available() else "cpu"

hidden_booster_text = ", loraeyes, beautiful face, small boobs, a cup"
hidden_negative = "big boobs, huge boobs, sexy, dirty, d cup, e cup, g cup, slutty, badhandv4, ng_deepnegative_v1_75t, worst quality, low quality, extra digits, text, signature, bad anatomy, mutated hand, error, missing finger, cropped, worse quality, bad quality, lowres, floating limbs, bad hands, anatomical nonsense"
hidden_cn_booster_text = ",loraeyes漂亮的脸,小胸,贫乳,a罩杯"
hidden_cn_negative = "大胸, ,, !, 。, ;,巨乳,性感,脏,d罩杯,e罩杯,g罩杯,骚,骚气,badhandv4, ng_deepnegative_v1_75t"

def translate(prompt):
    trans_text = prompt
    translated = model.generate(**tokenizer(trans_text, return_tensors="pt", padding=True))
    tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
    tgt_text = ''.join(tgt_text)[:-1]
    return tgt_text

hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')

controlnet_scribble = ControlNetModel.from_pretrained(
    "lllyasviel/sd-controlnet-scribble", torch_dtype=torch.float16, safety_checker=None, requires_safety_checker=False, )

pipe_scribble = StableDiffusionControlNetPipeline.from_single_file(
    "https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors", controlnet=controlnet_scribble, safety_checker=None, requires_safety_checker=False,
    torch_dtype=torch.float16,
)

# pipe.load_lora_weights("shellypeng/detail-tweaker")
# pipe.load_lora_weights("shellypeng/midjourney-anime")

# pipe.load_lora_weights("shellypeng/animetarot")
# pipe.load_lora_weights("shellypeng/anime-stickers-v3")
# pipe.load_lora_weights("shellypeng/anime-magazine")

# pipe_img2img.load_lora_weights("yenojunie/slit-pupils")

# pipe_scribble.load_lora_weights("shellypeng/detail-tweaker")
# pipe_scribble.fuse_lora(lora_scale=0.1)
pipe_scribble.load_lora_weights("shellypeng/lora-eyes")
pipe_scribble.fuse_lora(lora_scale=0.1)
# pipe_scribble.load_lora_weights("shellypeng/beautiful-eyes")
# pipe_scribble.fuse_lora(lora_scale=0.1)

pipe_scribble.load_textual_inversion("shellypeng/bad-prompt")
pipe_scribble.load_textual_inversion("shellypeng/badhandv4")
# pipe.load_textual_inversion("shellypeng/easynegative")
pipe_scribble.load_textual_inversion("shellypeng/deepnegative")
pipe_scribble.load_textual_inversion("shellypeng/verybadimagenegative")
pipe_scribble.scheduler = DPMSolverMultistepScheduler.from_config(pipe_scribble.scheduler.config, use_karras_sigmas=True)
# pipe.enable_model_cpu_offload()
pipe_scribble.safety_checker = None
pipe_scribble.requires_safety_checker = False
pipe_scribble.to(device)

def scribble_to_image(text, neg_prompt_box, input_img):
    """
    pass the sd model and do scribble to image
    include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
    expression to improve hand)
    """



# if auto detect detects chinese => auto turn on chinese prompting checkbox
    # change param "bag" below to text, image param below to input_img
    input_img = Image.fromarray(input_img)
    input_img = hed(input_img, scribble=True)
    input_img = load_image(input_img)
    # global prompt
    lang_check_label = pipe(text, top_k=1, truncation=True)[0]['label']
    lang_check_score = pipe(text, top_k=1, truncation=True)[0]['score']
    if lang_check_label == 'zh' and lang_check_score >= 0.85:
        text = translate(text)
    compel_proc = Compel(tokenizer=pipe_scribble.tokenizer, text_encoder=pipe_scribble.text_encoder)
    prompt = text + hidden_booster_text
    prompt_embeds = compel_proc(prompt)
    negative_prompt = neg_prompt_box + hidden_negative
    negative_prompt_embeds = compel_proc(negative_prompt)

    res_image0 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
    res_image1 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
    res_image2 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
    res_image3 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]

    return res_image0, res_image1, res_image2, res_image3

def real_img2img_to_anime(text, neg_prompt_box, input_img):
    """
    pass the sd model and do scribble to image
    include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
    expression to improve hand)
    """
    input_img = Image.fromarray(input_img)
    input_img = load_image(input_img)
    lang_check_label = pipe(text, top_k=1, truncation=True)[0]['label']
    lang_check_score = pipe(text, top_k=1, truncation=True)[0]['score']
    if lang_check_label == 'zh' and lang_check_score >= 0.85:
        text = translate(text)

    compel_proc = Compel(tokenizer=pipe_scribble.tokenizer, text_encoder=pipe_scribble.text_encoder)
    prompt = text + hidden_booster_text
    prompt_embeds = compel_proc(prompt)

    negative_prompt = neg_prompt_box + hidden_negative
    negative_prompt_embeds = compel_proc(negative_prompt)
    # input_img = depth_estimator(input_img)['depth']
    res_image0 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
    res_image1 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
    res_image2 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
    res_image3 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]

    return res_image0, res_image1, res_image2, res_image3


theme = gr.themes.Soft(
    primary_hue="orange",
    secondary_hue="orange",
).set(
    block_background_fill='*primary_50'
)

# %cd /content/drive/MyDrive/stable-diffusion-webui-colab/stable-diffusion-webui

pipe_img2img = StableDiffusionImg2ImgPipeline.from_single_file("https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors",
                                                               torch_dtype=torch.float16, safety_checker=None, requires_safety_checker=False)

# pipe_img2img.load_lora_weights("shellypeng/detail-tweaker")
# pipe_img2img.fuse_lora(lora_scale=0.1)
pipe_img2img.load_lora_weights("shellypeng/lora-eyes")
pipe_img2img.fuse_lora(lora_scale=0.1)
# pipe_img2img.load_lora_weights("shellypeng/beautiful-eyes")
# pipe_img2img.fuse_lora(lora_scale=0.1)

pipe_img2img.load_textual_inversion("shellypeng/bad-prompt")
pipe_img2img.load_textual_inversion("shellypeng/badhandv4")
# pipe.load_textual_inversion("shellypeng/easynegative")
pipe_img2img.load_textual_inversion("shellypeng/deepnegative")
pipe_img2img.load_textual_inversion("shellypeng/verybadimagenegative")
pipe_img2img.scheduler = DPMSolverMultistepScheduler.from_config(pipe_img2img.scheduler.config, use_karras_sigmas=True)
# pipe.enable_model_cpu_offload()
pipe_img2img.safety_checker = None
pipe_img2img.requires_safety_checker = False
pipe_img2img.to(device)

# pipe_img2img.safety_checker = lambda images, **kwargs: (images, [False] * len(images))

# depth_estimator = pipeline('depth-estimation')

# controlnet_depth = ControlNetModel.from_pretrained(
#     "lllyasviel/sd-controlnet-depth", torch_dtype=torch.float16
# )


# # models that worked well: anime god, pastel dream,
# # https://huggingface.co/shellypeng/featureless/tree/main
# pipe_depth = StableDiffusionControlNetPipeline.from_single_file(
#     "https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors", controlnet=controlnet_depth,
#     torch_dtype=torch.float16,
# )
# # pipe = StableDiffusionControlNetPipeline.from_pretrained("furusu/SSD-1B-anime",
# #     torch_dtype=torch.float16
# # )

# pipe_depth.load_lora_weights("shellypeng/detail-tweaker")
# pipe_depth.fuse_lora(lora_scale=0.1)
# # pipe.load_lora_weights("shellypeng/stylized-3d")
# # pipe.load_lora_weights("shellypeng/midjourney-anime")

# # pipe.load_lora_weights("shellypeng/animetarot")
# # pipe.load_lora_weights("shellypeng/anime-stickers-v3")
# # pipe.load_lora_weights("shellypeng/anime-magazine")



# pipe_depth.load_textual_inversion("shellypeng/bad-prompt")
# pipe_depth.load_textual_inversion("shellypeng/badhandv4")
# # pipe.load_textual_inversion("shellypeng/easynegative")
# pipe_depth.load_textual_inversion("shellypeng/deepnegative")
# pipe_depth.load_textual_inversion("shellypeng/verybadimagenegative")
# pipe_depth.scheduler = DPMSolverMultistepScheduler.from_config(pipe_depth.scheduler.config, use_karras_sigmas=True)
# # pipe.enable_model_cpu_offload()
# def dummy(images, **kwargs):
#     return images, False
# pipe_depth.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
# pipe_depth.to(device)
# # pipe.load_lora_weights("shellypeng/detail-tweaker", weight_name="add_detail.safetensors")

# # load textual inversion negative embeddings!!!: pipe.load_textual_inversion("sd-concepts-library/cat-toy")

# def real_to_anime(text, input_img):
#     """
#     pass the sd model and do scribble to image
#     include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
#     expression to improve hand)
#     """
#     input_img = Image.fromarray(input_img)
#     input_img = load_image(input_img)
#     input_img = depth_estimator(input_img)['depth']
#     res_image0 = pipe_depth(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
#     res_image1 = pipe_depth(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
#     res_image2 = pipe_depth(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
#     res_image3 = pipe_depth(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]

#     return res_image0, res_image1, res_image2, res_image3


# theme = gr.themes.Soft(
#     primary_hue="orange",
#     secondary_hue="orange",
# ).set(
#     block_background_fill='*primary_50'
# )

def zh_prompt_info(text, neg_text, chinese_check):
    can_raise_info = ""
    lang_check_label = pipe(text, top_k=1, truncation=True)[0]['label']
    lang_check_score = pipe(text, top_k=1, truncation=True)[0]['score']
    neg_lang_check_label = pipe(neg_text, top_k=1, truncation=True)[0]['label']
    neg_lang_check_score = pipe(neg_text, top_k=1, truncation=True)[0]['score']
    print(lang_check_label)
    if lang_check_label == 'zh' and lang_check_score >= 0.85:
        if not chinese_check:
            chinese_check = True
            can_raise_info = "zh"
        if neg_lang_check_label == 'en' and neg_lang_check_score >= 0.85:
            can_raise_info = "invalid"
            return True, can_raise_info
    elif lang_check_label == 'en' and lang_check_score >= 0.85:
        if chinese_check:
            chinese_check = False
            can_raise_info = "en"
        if neg_lang_check_label == 'zh' and neg_lang_check_score >= 0.85:
            can_raise_info = "invalid"
            return False, can_raise_info
    return chinese_check, can_raise_info
def mult_thread_img2img(prompt_box, neg_prompt_box, image_box):
    with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
        future = executor.submit(real_img2img_to_anime, prompt_box, neg_prompt_box, image_box)
        image1, image2, image3, image4 = future.result()
    return image1, image2, image3, image4
def mult_thread_scribble(prompt_box, neg_prompt_box, image_box):
    with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
        future = executor.submit(scribble_to_image, prompt_box, neg_prompt_box, image_box)
        image1, image2, image3, image4 = future.result()
    return image1, image2, image3, image4
def mult_thread_lang_class(prompt_box, neg_prompt_box, chinese_check):

    with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
        future = executor.submit(zh_prompt_info, prompt_box, neg_prompt_box, chinese_check)
        chinese_check, can_raise_info = future.result()
    if can_raise_info == "zh":
        gr.Info("Chinese Language Detected, Switching to Chinese Prompt Mode")
    elif can_raise_info == "en":
        gr.Info("English Language Detected, Disabling Chinese Prompt Mode")
    return chinese_check

with gr.Blocks(theme=theme, css="footer {visibility: hidden}", title="ShellAI Apps") as iface:
    with gr.Tab("Animefier"):
        with gr.Row(equal_height=True):
            with gr.Column():
                with gr.Row(equal_height=True):
                    with gr.Column(scale=4):
                        prompt_box = gr.Textbox(label="Prompt", placeholder="Enter a prompt", lines=3)
                        neg_prompt_box = gr.Textbox(label="Negative Prompt", placeholder="Enter a negative prompt(things you don't want to include in the generated image)", lines=3)
                    with gr.Row(equal_height=True):
                        chinese_check = gr.Checkbox(label="Chinese Prompt Mode", info="Click here to enable Chinese Prompting(点此触发中文提示词输入)")

                image_box = gr.Image(label="Input Image", height=350)
                gen_btn = gr.Button(value="Generate")

        with gr.Row(equal_height=True):
            global image1
            global image2
            global image3
            global image4
            image1 = gr.Image(label="Result 1")
            image2 = gr.Image(label="Result 2")
            image3 = gr.Image(label="Result 3")
            image4 = gr.Image(label="Result 4")


        gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_lang_class, inputs=[prompt_box, neg_prompt_box, chinese_check], outputs=[chinese_check], show_progress=False)
        gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_img2img, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4])

    with gr.Tab("AniSketch"):
        with gr.Row(equal_height=True):
            with gr.Column():
                with gr.Row(equal_height=True):
                    with gr.Column(scale=4):
                        prompt_box = gr.Textbox(label="Prompt", placeholder="Enter a prompt", lines=3)
                        neg_prompt_box = gr.Textbox(label="Negative Prompt", placeholder="Enter a negative prompt(things you don't want to include in the generated image)", lines=3)
                    with gr.Row(equal_height=True):
                        chinese_check = gr.Checkbox(label="Chinese Prompt Mode", info="Click here to enable Chinese Prompting(点此触发中文提示词输入)")

                image_box = gr.Image(label="Input Image", height=350)
                gen_btn = gr.Button(value="Generate")
        with gr.Row(equal_height=True):
            image1 = gr.Image(label="Result 1")
            image2 = gr.Image(label="Result 2")
            image3 = gr.Image(label="Result 3")
            image4 = gr.Image(label="Result 4")

        gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_lang_class, inputs=[prompt_box, neg_prompt_box, chinese_check], outputs=[chinese_check], show_progress=False)
        gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_scribble, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4])


        # gen_btn.click(mult_thread, [prompt_box, image_box, chinese_check], [image1, image2, image3, image4, chinese_check])
iface.dependencies[0]["show_progress"] = "hidden"
iface.launch(debug=True, share=True, auth=["shenrym", "shjdqw%23-sw2&"])