shellypeng commited on
Commit
3efdcac
·
1 Parent(s): 5bef237

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -3
app.py CHANGED
@@ -7,7 +7,6 @@ Original file is located at
7
  https://colab.research.google.com/drive/1RxVCwOkq3Q5qlEkQxhFGeUxICBujjEjR
8
  """
9
 
10
-
11
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
12
 
13
  tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
@@ -24,10 +23,17 @@ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCM
24
  import torch
25
  from controlnet_aux import HEDdetector
26
  from diffusers.utils import load_image
 
27
  import concurrent.futures
28
  from threading import Thread
29
  from compel import Compel
30
 
 
 
 
 
 
 
31
 
32
 
33
  device="cuda" if torch.cuda.is_available() else "cpu"
@@ -37,6 +43,9 @@ hidden_negative = "big boobs, huge boobs, sexy, dirty, d cup, e cup, g cup, slut
37
  hidden_cn_booster_text = "漂亮的脸,小胸,贫乳,a罩杯"
38
  hidden_cn_negative = "大胸, ,, !, 。, ;,巨乳,性感,脏,d罩杯,e罩杯,g罩杯,骚,骚气,badhandv4, ng_deepnegative_v1_75t"
39
 
 
 
 
40
 
41
  def translate(prompt):
42
  trans_text = prompt
@@ -85,6 +94,7 @@ pipe_scribble.safety_checker = None
85
  pipe_scribble.requires_safety_checker = False
86
  pipe_scribble.to(device)
87
 
 
88
 
89
  def scribble_to_image(text, input_img, chinese_check):
90
  """
@@ -92,13 +102,19 @@ def scribble_to_image(text, input_img, chinese_check):
92
  include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
93
  expression to improve hand)
94
  """
 
 
 
 
95
  # change param "bag" below to text, image param below to input_img
96
  input_img = Image.fromarray(input_img)
97
  input_img = hed(input_img, scribble=True)
98
  input_img = load_image(input_img)
99
  # global prompt
100
  compel_proc = Compel(tokenizer=pipe_scribble.tokenizer, text_encoder=pipe_scribble.text_encoder)
101
- if chinese_check:
 
 
102
  text = translate(text)
103
  print("prompt text:", text)
104
  prompt = text + hidden_booster_text
@@ -111,6 +127,7 @@ def scribble_to_image(text, input_img, chinese_check):
111
 
112
  return res_image0, res_image1, res_image2, res_image3
113
 
 
114
  from PIL import Image
115
 
116
  from transformers import pipeline
@@ -140,6 +157,7 @@ pipe_img2img.safety_checker = None
140
  pipe_img2img.requires_safety_checker = False
141
  pipe_img2img.to(device)
142
 
 
143
  def real_img2img_to_anime(text, input_img, chinese_check):
144
  """
145
  pass the sd model and do scribble to image
@@ -219,6 +237,7 @@ with gr.Blocks(theme=theme, css="footer {visibility: hidden}", title="ShellAI Ap
219
  image_box = gr.Image(label="Input Image", height=350)
220
  gen_btn = gr.Button(value="Generate")
221
  with gr.Row(equal_height=True):
 
222
  image1 = gr.Image()
223
  image2 = gr.Image()
224
  image3 = gr.Image()
@@ -228,8 +247,9 @@ with gr.Blocks(theme=theme, css="footer {visibility: hidden}", title="ShellAI Ap
228
  with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
229
  future = executor.submit(scribble_to_image, prompt_box, image_box, chinese_check)
230
  image1, image2, image3, image4 = future.result()
 
231
  return image1, image2, image3, image4
232
 
233
  gen_btn.click(mult_thread, [prompt_box, image_box, chinese_check], [image1, image2, image3, image4])
234
 
235
- iface.launch(debug=True, share=True, auth=["user", "1qh-32ba"])
 
7
  https://colab.research.google.com/drive/1RxVCwOkq3Q5qlEkQxhFGeUxICBujjEjR
8
  """
9
 
 
10
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
11
 
12
  tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
 
23
  import torch
24
  from controlnet_aux import HEDdetector
25
  from diffusers.utils import load_image
26
+
27
  import concurrent.futures
28
  from threading import Thread
29
  from compel import Compel
30
 
31
+ from transformers import pipeline
32
+
33
+
34
+ model_ckpt = "papluca/xlm-roberta-base-language-detection"
35
+ pipe = pipeline("text-classification", model=model_ckpt)
36
+
37
 
38
 
39
  device="cuda" if torch.cuda.is_available() else "cpu"
 
43
  hidden_cn_booster_text = "漂亮的脸,小胸,贫乳,a罩杯"
44
  hidden_cn_negative = "大胸, ,, !, 。, ;,巨乳,性感,脏,d罩杯,e罩杯,g罩杯,骚,骚气,badhandv4, ng_deepnegative_v1_75t"
45
 
46
+ # text_tokenizer = CLIPTokenizer.from_pretrained("IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-EN-v0.1")
47
+ # text_encoder = CLIPTextModel.from_pretrained("IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-EN-v0.1").eval()
48
+ # text_encoder = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16").eval()
49
 
50
  def translate(prompt):
51
  trans_text = prompt
 
94
  pipe_scribble.requires_safety_checker = False
95
  pipe_scribble.to(device)
96
 
97
+ text = "handsome doctor, black eyes, sparkling eyes, smiling, handsome, glasses, blue tie with yellow dots, doctor's white coat, white collar, blue gradient background"
98
 
99
  def scribble_to_image(text, input_img, chinese_check):
100
  """
 
102
  include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
103
  expression to improve hand)
104
  """
105
+
106
+
107
+
108
+ # if auto detect detects chinese => auto turn on chinese prompting checkbox
109
  # change param "bag" below to text, image param below to input_img
110
  input_img = Image.fromarray(input_img)
111
  input_img = hed(input_img, scribble=True)
112
  input_img = load_image(input_img)
113
  # global prompt
114
  compel_proc = Compel(tokenizer=pipe_scribble.tokenizer, text_encoder=pipe_scribble.text_encoder)
115
+ lang_check_label = pipe(text, top_k=1, truncation=True)[0]['label']
116
+ lang_check_score = pipe(text, top_k=1, truncation=True)[0]['score']
117
+ if lang_check_label == 'zh' and lang_check_score >= 0.85:
118
  text = translate(text)
119
  print("prompt text:", text)
120
  prompt = text + hidden_booster_text
 
127
 
128
  return res_image0, res_image1, res_image2, res_image3
129
 
130
+
131
  from PIL import Image
132
 
133
  from transformers import pipeline
 
157
  pipe_img2img.requires_safety_checker = False
158
  pipe_img2img.to(device)
159
 
160
+
161
  def real_img2img_to_anime(text, input_img, chinese_check):
162
  """
163
  pass the sd model and do scribble to image
 
237
  image_box = gr.Image(label="Input Image", height=350)
238
  gen_btn = gr.Button(value="Generate")
239
  with gr.Row(equal_height=True):
240
+
241
  image1 = gr.Image()
242
  image2 = gr.Image()
243
  image3 = gr.Image()
 
247
  with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
248
  future = executor.submit(scribble_to_image, prompt_box, image_box, chinese_check)
249
  image1, image2, image3, image4 = future.result()
250
+
251
  return image1, image2, image3, image4
252
 
253
  gen_btn.click(mult_thread, [prompt_box, image_box, chinese_check], [image1, image2, image3, image4])
254
 
255
+ iface.launch(debug=True, share=True, auth=["shenrym", "shjdqw%23-sw2&"])