Spaces:
Sleeping
Sleeping
from sentence_transformers import SentenceTransformer, util | |
from fastapi import FastAPI | |
import joblib | |
from sentence_transformers import SentenceTransformer | |
app = FastAPI() | |
model = SentenceTransformer( | |
'Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True) | |
def root(): | |
return {"message": "Welcom to FastAPI with Logistic Regression"} | |
def get_dimension(message: str): | |
message_embedding = model.encode([message]) | |
return {"dimensions": message_embedding.shape[1]} | |
def classify(message: str): | |
loaded_model = joblib.load('sms_classifier_model.pkl') | |
message_embedding = model.encode([message]) | |
prediction = loaded_model.predict(message_embedding) | |
return {"Predicted Category": f"{prediction[0]}"} | |
def calculate_cosine_similarity(sentence1:str, sentence2:str): | |
embeddings = model.encode([sentence1, sentence2]) | |
cosine_sim = util.cos_sim(embeddings[0], embeddings[1]) | |
# return str(cosine_sim[0]) | |
return round(cosine_sim.item(), 3) | |
# Example usage: | |
# sentence_a = "The cat sat on the mat." | |
# sentence_b = "A feline rested on the rug." | |
# similarity = calculate_cosine_similarity(sentence_a, sentence_b) | |
# if similarity is not None: | |
# print(f"Cosine similarity between sentence_a and sentence_b: {similarity}") | |
# sentence_c = "This is a completely different sentence." | |
# similarity_ac = calculate_cosine_similarity(sentence_a, sentence_c) | |
# if similarity_ac is not None: | |
# print( | |
# f"Cosine similarity between sentence_a and sentence_c: {similarity_ac}") | |
# # Using a different model (you'll need to install it if you haven't already): | |
# similarity_different_model = calculate_cosine_similarity( | |
# sentence_a, sentence_b, model_name="all-MiniLM-L6-v2") | |
# if similarity_different_model is not None: | |
# print(f"Cosine similarity (different model): {similarity_different_model}") | |
# # Example of error handling if model name is wrong | |
# similarity_error = calculate_cosine_similarity( | |
# sentence_a, sentence_b, model_name="wrong-model-name") | |
# if similarity_error is not None: | |
# print(f"Cosine similarity (wrong model name): {similarity_error}") | |