from sentence_transformers import SentenceTransformer, util from fastapi import FastAPI import joblib from sentence_transformers import SentenceTransformer app = FastAPI() model = SentenceTransformer( 'Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True) @app.get("/") def root(): return {"message": "Welcom to FastAPI with Logistic Regression"} @app.post("/dimensions/") def get_dimension(message: str): message_embedding = model.encode([message]) return {"dimensions": message_embedding.shape[1]} @app.post("/classify/") def classify(message: str): loaded_model = joblib.load('sms_classifier_model.pkl') message_embedding = model.encode([message]) prediction = loaded_model.predict(message_embedding) return {"Predicted Category": f"{prediction[0]}"} @app.post("/cosine-similarity") def calculate_cosine_similarity(sentence1:str, sentence2:str): embeddings = model.encode([sentence1, sentence2]) cosine_sim = util.cos_sim(embeddings[0], embeddings[1]) # return str(cosine_sim[0]) return round(cosine_sim.item(), 3) # Example usage: # sentence_a = "The cat sat on the mat." # sentence_b = "A feline rested on the rug." # similarity = calculate_cosine_similarity(sentence_a, sentence_b) # if similarity is not None: # print(f"Cosine similarity between sentence_a and sentence_b: {similarity}") # sentence_c = "This is a completely different sentence." # similarity_ac = calculate_cosine_similarity(sentence_a, sentence_c) # if similarity_ac is not None: # print( # f"Cosine similarity between sentence_a and sentence_c: {similarity_ac}") # # Using a different model (you'll need to install it if you haven't already): # similarity_different_model = calculate_cosine_similarity( # sentence_a, sentence_b, model_name="all-MiniLM-L6-v2") # if similarity_different_model is not None: # print(f"Cosine similarity (different model): {similarity_different_model}") # # Example of error handling if model name is wrong # similarity_error = calculate_cosine_similarity( # sentence_a, sentence_b, model_name="wrong-model-name") # if similarity_error is not None: # print(f"Cosine similarity (wrong model name): {similarity_error}")