Spaces:
Sleeping
Sleeping
File size: 2,235 Bytes
6d6f559 3f0e2a9 6d6f559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
from sentence_transformers import SentenceTransformer, util
from fastapi import FastAPI
import joblib
from sentence_transformers import SentenceTransformer
app = FastAPI()
model = SentenceTransformer(
'Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True)
@app.get("/")
def root():
return {"message": "Welcom to FastAPI with Logistic Regression"}
@app.post("/dimensions/")
def get_dimension(message: str):
message_embedding = model.encode([message])
return {"dimensions": message_embedding.shape[1]}
@app.post("/classify/")
def get_dimension(message: str):
loaded_model = joblib.load('sms_classifier_model.pkl')
message_embedding = model.encode([message])
prediction = loaded_model.predict(message_embedding)
return {"Predicted Category": f"{prediction[0]}"}
@app.post("/cosine-similarity")
def calculate_cosine_similarity(sentence1:str, sentence2:str):
embeddings = model.encode([sentence1, sentence2])
cosine_sim = util.cos_sim(embeddings[0], embeddings[1])
# return str(cosine_sim[0])
return round(cosine_sim.item(), 3)
# Example usage:
# sentence_a = "The cat sat on the mat."
# sentence_b = "A feline rested on the rug."
# similarity = calculate_cosine_similarity(sentence_a, sentence_b)
# if similarity is not None:
# print(f"Cosine similarity between sentence_a and sentence_b: {similarity}")
# sentence_c = "This is a completely different sentence."
# similarity_ac = calculate_cosine_similarity(sentence_a, sentence_c)
# if similarity_ac is not None:
# print(
# f"Cosine similarity between sentence_a and sentence_c: {similarity_ac}")
# # Using a different model (you'll need to install it if you haven't already):
# similarity_different_model = calculate_cosine_similarity(
# sentence_a, sentence_b, model_name="all-MiniLM-L6-v2")
# if similarity_different_model is not None:
# print(f"Cosine similarity (different model): {similarity_different_model}")
# # Example of error handling if model name is wrong
# similarity_error = calculate_cosine_similarity(
# sentence_a, sentence_b, model_name="wrong-model-name")
# if similarity_error is not None:
# print(f"Cosine similarity (wrong model name): {similarity_error}")
|