Spaces:
Sleeping
Sleeping
[email protected]
commited on
Commit
·
6d6f559
1
Parent(s):
ea77c7d
added endpoint cosine-similarity
Browse files- __pycache__/main.cpython-310.pyc +0 -0
- main.py +42 -0
__pycache__/main.cpython-310.pyc
CHANGED
Binary files a/__pycache__/main.cpython-310.pyc and b/__pycache__/main.cpython-310.pyc differ
|
|
main.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from fastapi import FastAPI
|
2 |
import joblib
|
3 |
from sentence_transformers import SentenceTransformer
|
@@ -25,3 +26,44 @@ def get_dimension(message: str):
|
|
25 |
prediction = loaded_model.predict(message_embedding)
|
26 |
return {"Predicted Category": f"{prediction[0]}"}
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer, util
|
2 |
from fastapi import FastAPI
|
3 |
import joblib
|
4 |
from sentence_transformers import SentenceTransformer
|
|
|
26 |
prediction = loaded_model.predict(message_embedding)
|
27 |
return {"Predicted Category": f"{prediction[0]}"}
|
28 |
|
29 |
+
|
30 |
+
@app.post("/cosine-similarity")
|
31 |
+
def calculate_cosine_similarity(sentence1:str, sentence2:str):
|
32 |
+
|
33 |
+
embeddings = model.encode([sentence1, sentence2])
|
34 |
+
|
35 |
+
cosine_sim = util.cos_sim(embeddings[0], embeddings[1])
|
36 |
+
# return str(cosine_sim[0])
|
37 |
+
return round(cosine_sim.item(), 3)
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
# Example usage:
|
43 |
+
# sentence_a = "The cat sat on the mat."
|
44 |
+
# sentence_b = "A feline rested on the rug."
|
45 |
+
# similarity = calculate_cosine_similarity(sentence_a, sentence_b)
|
46 |
+
|
47 |
+
# if similarity is not None:
|
48 |
+
# print(f"Cosine similarity between sentence_a and sentence_b: {similarity}")
|
49 |
+
|
50 |
+
# sentence_c = "This is a completely different sentence."
|
51 |
+
# similarity_ac = calculate_cosine_similarity(sentence_a, sentence_c)
|
52 |
+
|
53 |
+
# if similarity_ac is not None:
|
54 |
+
# print(
|
55 |
+
# f"Cosine similarity between sentence_a and sentence_c: {similarity_ac}")
|
56 |
+
|
57 |
+
|
58 |
+
# # Using a different model (you'll need to install it if you haven't already):
|
59 |
+
# similarity_different_model = calculate_cosine_similarity(
|
60 |
+
# sentence_a, sentence_b, model_name="all-MiniLM-L6-v2")
|
61 |
+
# if similarity_different_model is not None:
|
62 |
+
# print(f"Cosine similarity (different model): {similarity_different_model}")
|
63 |
+
|
64 |
+
# # Example of error handling if model name is wrong
|
65 |
+
# similarity_error = calculate_cosine_similarity(
|
66 |
+
# sentence_a, sentence_b, model_name="wrong-model-name")
|
67 |
+
|
68 |
+
# if similarity_error is not None:
|
69 |
+
# print(f"Cosine similarity (wrong model name): {similarity_error}")
|