shawarmabytes's picture
Update app.py
867f7a1
raw
history blame
1.87 kB
import streamlit.components.v1 as components
from streamlit_player import st_player
from transformers import pipeline
import streamlit as st
import random
st.header("stream your emotions")
st.caption("tester")
def tester(text):
classifier = pipeline("sentiment-analysis", model='bhadresh-savani/distilbert-base-uncased-emotion')
results = classifier(text)
#st.subheader(results[0]['label'])
#tester(emo)
generator = st.button("Generate Song!")
if (generator == True):
st.subheader(results[0]['label'])
if (results[0]['label']=="joy"): #songs for joy emotion
with open('joyplaylist.txt') as f:
contents = f.read()
components.html(contents,width=560,height=325)
elif (results[0]['label']=="fear"):
with open('fearplaylist.txt') as f:
contents = f.read()
components.html(contents,width=560,height=325)
elif (results[0]['label']=="anger"): #songs for anger emotion
with open('angryplaylist.txt') as f:
contents = f.read()
components.html(contents,width=560,height=325)
elif (results[0]['label']=="sadness"): #songs for sadness emotion
with open('sadplaylist.txt') as f:
contents = f.read()
components.html(contents,width=560,height=325)
elif (results[0]['label']=="surprise"):
st.write("gulat ka noh")
elif (results[0]['label']=="love"):
with open('loveplaylist.txt') as f:
contents = f.read()
components.html(contents,width=560,height=325)
emo = st.text_input("Enter a text/phrase/sentence. A corresponding song will be recommended based on its emotion.")
st.sidebar.subheader("Model Description")
st.sidebar.write("This application uses the DistilBERT model, a distilled version of BERT. The BERT framework uses" )
tester(emo)