File size: 1,866 Bytes
6dba858
88055ae
 
6dba858
f301aac
88055ae
cb68822
867f7a1
 
 
88055ae
2ecd65e
88055ae
1cd7ed4
6dba858
cb68822
f92543a
 
d294c45
f4ca8de
d2ac7fa
 
 
 
 
 
 
 
 
 
 
f92543a
 
d2ac7fa
6b072bf
d2ac7fa
 
 
 
6b072bf
d2ac7fa
 
 
 
 
 
 
 
4e58636
6b072bf
9bc5e9e
b8a2f8c
4e58636
bd41a76
f4ca8de
9bc5e9e
4854d0b
d7857b3
68de716
88055ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import streamlit.components.v1 as components
from streamlit_player import st_player
from transformers import pipeline
import streamlit as st
import random 


st.header("stream your emotions")
st.caption("tester")

def tester(text):
  classifier = pipeline("sentiment-analysis", model='bhadresh-savani/distilbert-base-uncased-emotion')
  results = classifier(text)
  #st.subheader(results[0]['label'])

#tester(emo)
  generator = st.button("Generate Song!")
  if (generator == True):
    st.subheader(results[0]['label'])
  
    if (results[0]['label']=="joy"): #songs for joy emotion
      with open('joyplaylist.txt') as f:
        contents = f.read()
      components.html(contents,width=560,height=325)
    
    elif (results[0]['label']=="fear"):
      with open('fearplaylist.txt') as f:
        contents = f.read()
      components.html(contents,width=560,height=325)
    
    elif (results[0]['label']=="anger"): #songs for anger emotion
      with open('angryplaylist.txt') as f:
        contents = f.read()
      components.html(contents,width=560,height=325)    

    elif (results[0]['label']=="sadness"): #songs for sadness emotion
      with open('sadplaylist.txt') as f:
        contents = f.read()
      components.html(contents,width=560,height=325)

    elif (results[0]['label']=="surprise"):
      st.write("gulat ka noh")

    elif (results[0]['label']=="love"):
      with open('loveplaylist.txt') as f:
        contents = f.read()
      components.html(contents,width=560,height=325)
 
emo = st.text_input("Enter a text/phrase/sentence. A corresponding song will be recommended based on its emotion.")


st.sidebar.subheader("Model Description")
st.sidebar.write("This application uses the DistilBERT model, a distilled version of BERT. The BERT framework uses" )



tester(emo)