sharath6900's picture
Update app.py
c71b2e8 verified
raw
history blame
1.18 kB
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("suriya7/bart-finetuned-text-summarization")
model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/bart-finetuned-text-summarization")
def generate_summary(text):
inputs = tokenizer([text], max_length=1024, return_tensors='pt', truncation=True)
summary_ids = model.generate(inputs['input_ids'], max_new_tokens=100, do_sample=False)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
# Streamlit interface
st.title("Text Summarization App")
# User text input
user_input = st.text_area("Enter the text you want to summarize", height=200)
if st.button("Generate Summary"):
if user_input:
with st.spinner("Generating summary..."):
summary = generate_summary(user_input)
st.subheader("Summary:")
st.write(summary)
else:
st.warning("Please enter text to summarize.")
# Instructions for using the app
st.write("Enter your text in the box above and click 'Generate Summary' to get a summarized version of your text.")