Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,7 @@
|
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
2 |
|
|
|
3 |
tokenizer = AutoTokenizer.from_pretrained("suriya7/bart-finetuned-text-summarization")
|
4 |
model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/bart-finetuned-text-summarization")
|
5 |
|
@@ -9,9 +11,20 @@ def generate_summary(text):
|
|
9 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
10 |
return summary
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
|
4 |
+
# Load the tokenizer and model
|
5 |
tokenizer = AutoTokenizer.from_pretrained("suriya7/bart-finetuned-text-summarization")
|
6 |
model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/bart-finetuned-text-summarization")
|
7 |
|
|
|
11 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
12 |
return summary
|
13 |
|
14 |
+
# Streamlit interface
|
15 |
+
st.title("Text Summarization App")
|
16 |
+
|
17 |
+
# User text input
|
18 |
+
user_input = st.text_area("Enter the text you want to summarize", height=200)
|
19 |
+
|
20 |
+
if st.button("Generate Summary"):
|
21 |
+
if user_input:
|
22 |
+
with st.spinner("Generating summary..."):
|
23 |
+
summary = generate_summary(user_input)
|
24 |
+
st.subheader("Summary:")
|
25 |
+
st.write(summary)
|
26 |
+
else:
|
27 |
+
st.warning("Please enter text to summarize.")
|
28 |
+
|
29 |
+
# Instructions for using the app
|
30 |
+
st.write("Enter your text in the box above and click 'Generate Summary' to get a summarized version of your text.")
|