Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Load model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("suriya7/bart-finetuned-text-summarization") | |
model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/bart-finetuned-text-summarization") | |
def generate_summary(text): | |
inputs = tokenizer([text], max_length=1024, return_tensors='pt', truncation=True) | |
summary_ids = model.generate(inputs['input_ids'], max_new_tokens=100, do_sample=False) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return summary | |
def save_to_history(input_text, summary_text): | |
with open("history.txt", "a") as file: | |
file.write(f"Input: {input_text}\nSummary: {summary_text}\n\n") | |
# Streamlit app | |
st.set_page_config(page_title='Text Summarization App') | |
st.title('Text Summarization App') | |
txt_input = st.text_area('Enter your text', '', height=200) | |
if st.button('Generate Summary'): | |
if txt_input: | |
with st.spinner('Generating summary...'): | |
summary = generate_summary(txt_input) | |
save_to_history(txt_input, summary) | |
st.subheader('Generated Summary:') | |
st.write(summary) | |
else: | |
st.warning('Please enter some text to summarize.') | |