Spaces:
Sleeping
Sleeping
File size: 1,268 Bytes
c71b2e8 8fff906 b17a76b 526d29a 8fff906 b17a76b 8fff906 526d29a 35d8013 526d29a 8fff906 526d29a 7f33eef 526d29a c71b2e8 526d29a c71b2e8 526d29a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("suriya7/bart-finetuned-text-summarization")
model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/bart-finetuned-text-summarization")
def generate_summary(text):
inputs = tokenizer([text], max_length=1024, return_tensors='pt', truncation=True)
summary_ids = model.generate(inputs['input_ids'], max_new_tokens=100, do_sample=False)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
def save_to_history(input_text, summary_text):
with open("history.txt", "a") as file:
file.write(f"Input: {input_text}\nSummary: {summary_text}\n\n")
# Streamlit app
st.set_page_config(page_title='Text Summarization App')
st.title('Text Summarization App')
txt_input = st.text_area('Enter your text', '', height=200)
if st.button('Generate Summary'):
if txt_input:
with st.spinner('Generating summary...'):
summary = generate_summary(txt_input)
save_to_history(txt_input, summary)
st.subheader('Generated Summary:')
st.write(summary)
else:
st.warning('Please enter some text to summarize.')
|