KrSharangrav commited on
Commit
b9a2016
·
1 Parent(s): 84326e0

changed in UI

Browse files
Files changed (1) hide show
  1. chatbot.py +5 -7
chatbot.py CHANGED
@@ -72,7 +72,6 @@ def is_entry_query(prompt):
72
  return False, None
73
 
74
  # Helper: Detect if the query is a basic dataset question.
75
- # Examples: "What is the dataset summary?", "Show me the sentiment distribution", etc.
76
  def is_basic_dataset_question(prompt):
77
  lower = prompt.lower()
78
  keywords = ["dataset summary", "total tweets", "sentiment distribution", "overall dataset", "data overview", "data summary"]
@@ -87,7 +86,6 @@ def chatbot_response(user_prompt):
87
  if is_basic_dataset_question(user_prompt):
88
  summary = get_dataset_summary()
89
  ai_response = "Dataset Summary:\n" + summary
90
- # Run analysis on the summary text
91
  sentiment_label, sentiment_confidence = analyze_sentiment(summary)
92
  topic_label, topic_confidence = extract_topic(summary)
93
  return ai_response, sentiment_label, sentiment_confidence, topic_label, topic_confidence
@@ -102,18 +100,18 @@ def chatbot_response(user_prompt):
102
  entry_text = entry.get("text", "No text available.")
103
  entry_user = entry.get("user", "Unknown")
104
  entry_date = entry.get("date", "Unknown")
105
- # Build a static response message with the required format
106
  ai_response = (
107
  "Let's break down this tweet-like MongoDB entry:\n\n"
108
- f"Tweet: {entry_text}\n"
109
- f"User: {entry_user}\n"
110
- f"Date: {entry_date}"
111
  )
112
  sentiment_label, sentiment_confidence = analyze_sentiment(entry_text)
113
  topic_label, topic_confidence = extract_topic(entry_text)
114
  return ai_response, sentiment_label, sentiment_confidence, topic_label, topic_confidence
115
 
116
- # For other queries, use the generative model (this branch may be slower).
117
  model_gen = genai.GenerativeModel("gemini-1.5-pro")
118
  ai_response_obj = model_gen.generate_content(user_prompt)
119
  ai_response = ai_response_obj.text
 
72
  return False, None
73
 
74
  # Helper: Detect if the query is a basic dataset question.
 
75
  def is_basic_dataset_question(prompt):
76
  lower = prompt.lower()
77
  keywords = ["dataset summary", "total tweets", "sentiment distribution", "overall dataset", "data overview", "data summary"]
 
86
  if is_basic_dataset_question(user_prompt):
87
  summary = get_dataset_summary()
88
  ai_response = "Dataset Summary:\n" + summary
 
89
  sentiment_label, sentiment_confidence = analyze_sentiment(summary)
90
  topic_label, topic_confidence = extract_topic(summary)
91
  return ai_response, sentiment_label, sentiment_confidence, topic_label, topic_confidence
 
100
  entry_text = entry.get("text", "No text available.")
101
  entry_user = entry.get("user", "Unknown")
102
  entry_date = entry.get("date", "Unknown")
103
+ # Build a static response message with new lines for each field.
104
  ai_response = (
105
  "Let's break down this tweet-like MongoDB entry:\n\n"
106
+ f"**Tweet:** {entry_text}\n\n"
107
+ f"**User:** {entry_user}\n\n"
108
+ f"**Date:** {entry_date}"
109
  )
110
  sentiment_label, sentiment_confidence = analyze_sentiment(entry_text)
111
  topic_label, topic_confidence = extract_topic(entry_text)
112
  return ai_response, sentiment_label, sentiment_confidence, topic_label, topic_confidence
113
 
114
+ # For other queries, use the generative model.
115
  model_gen = genai.GenerativeModel("gemini-1.5-pro")
116
  ai_response_obj = model_gen.generate_content(user_prompt)
117
  ai_response = ai_response_obj.text