KrSharangrav
change in model
b6af5ee
raw
history blame
2.43 kB
import streamlit as st
import pandas as pd
import google.generativeai as genai # Import Generative AI library
import os
from pymongo import MongoClient
from db import insert_data_if_empty, get_mongo_client # Import functions from db.py
from transformers import pipeline # Import sentiment analysis pipeline
# πŸ”‘ Fetch API key from Hugging Face Secrets
GEMINI_API_KEY = os.getenv("gemini_api")
if GEMINI_API_KEY:
genai.configure(api_key=GEMINI_API_KEY)
else:
st.error("⚠️ Google API key is missing! Set it in Hugging Face Secrets.")
#### **1. Ensure Data is Inserted Before Display**
insert_data_if_empty()
#### **2. MongoDB Connection**
collection = get_mongo_client()
#### **3. Load Sentiment Analysis Model**
sentiment_pipeline = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
def analyze_sentiment(text):
"""Analyze sentiment using RoBERTa model."""
sentiment_result = sentiment_pipeline(text)[0]['label']
return sentiment_result # Returns "LABEL_0", "LABEL_1", or "LABEL_2"
#### **4. Streamlit App to Display Data**
st.title("πŸ“Š MongoDB Data Viewer with AI & Sentiment Analysis")
# Show first 5 rows from MongoDB
st.subheader("First 5 Rows from Database")
data = list(collection.find({}, {"_id": 0}).limit(5))
if data:
st.write(pd.DataFrame(data))
else:
st.warning("⚠️ No data found. Try refreshing the app.")
# Button to show full MongoDB data
if st.button("Show Complete Data"):
all_data = list(collection.find({}, {"_id": 0}))
st.write(pd.DataFrame(all_data))
#### **5. AI Chatbot with Sentiment Analysis**
st.subheader("πŸ€– AI Chatbot with Sentiment Analysis")
# User input for chatbot
user_prompt = st.text_input("Paste text here for AI sentiment analysis:")
if st.button("Get AI Response & Sentiment"):
if user_prompt:
try:
# Generate AI response
model = genai.GenerativeModel("gemini-1.5-pro")
response = model.generate_content(user_prompt)
ai_response = response.text
# Analyze sentiment
sentiment = analyze_sentiment(ai_response)
# Display results
st.write("### AI Response:")
st.write(ai_response)
st.write(f"**Sentiment Analysis:** {sentiment}")
except Exception as e:
st.error(f"❌ Error: {e}")
else:
st.warning("⚠️ Please enter a text input.")