File size: 2,434 Bytes
0105e3b
af09235
5628a29
 
0105e3b
58c2482
b6af5ee
5628a29
 
 
 
 
 
 
 
ea4634d
58c2482
 
ea4634d
58c2482
af09235
ea4634d
b6af5ee
 
 
 
 
 
 
 
 
 
ea4634d
af09235
 
 
 
58c2482
ea4634d
58c2482
 
 
 
 
 
 
e94ec88
b6af5ee
 
e94ec88
 
b6af5ee
e94ec88
b6af5ee
e94ec88
5628a29
b6af5ee
 
 
 
38207ff
b6af5ee
 
38207ff
b6af5ee
 
 
 
38207ff
5628a29
 
e94ec88
b6af5ee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import streamlit as st
import pandas as pd
import google.generativeai as genai  # Import Generative AI library
import os
from pymongo import MongoClient
from db import insert_data_if_empty, get_mongo_client  # Import functions from db.py
from transformers import pipeline  # Import sentiment analysis pipeline

# 🔑 Fetch API key from Hugging Face Secrets
GEMINI_API_KEY = os.getenv("gemini_api")

if GEMINI_API_KEY:
    genai.configure(api_key=GEMINI_API_KEY)
else:
    st.error("⚠️ Google API key is missing! Set it in Hugging Face Secrets.")

#### **1. Ensure Data is Inserted Before Display**
insert_data_if_empty()

#### **2. MongoDB Connection**
collection = get_mongo_client()

#### **3. Load Sentiment Analysis Model**
sentiment_pipeline = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")

def analyze_sentiment(text):
    """Analyze sentiment using RoBERTa model."""
    sentiment_result = sentiment_pipeline(text)[0]['label']
    return sentiment_result  # Returns "LABEL_0", "LABEL_1", or "LABEL_2"

#### **4. Streamlit App to Display Data**
st.title("📊 MongoDB Data Viewer with AI & Sentiment Analysis")

# Show first 5 rows from MongoDB
st.subheader("First 5 Rows from Database")
data = list(collection.find({}, {"_id": 0}).limit(5))

if data:
    st.write(pd.DataFrame(data))
else:
    st.warning("⚠️ No data found. Try refreshing the app.")

# Button to show full MongoDB data
if st.button("Show Complete Data"):
    all_data = list(collection.find({}, {"_id": 0}))
    st.write(pd.DataFrame(all_data))

#### **5. AI Chatbot with Sentiment Analysis**
st.subheader("🤖 AI Chatbot with Sentiment Analysis")

# User input for chatbot
user_prompt = st.text_input("Paste text here for AI sentiment analysis:")

if st.button("Get AI Response & Sentiment"):
    if user_prompt:
        try:
            # Generate AI response
            model = genai.GenerativeModel("gemini-1.5-pro")
            response = model.generate_content(user_prompt)
            ai_response = response.text

            # Analyze sentiment
            sentiment = analyze_sentiment(ai_response)

            # Display results
            st.write("### AI Response:")
            st.write(ai_response)
            st.write(f"**Sentiment Analysis:** {sentiment}")

        except Exception as e:
            st.error(f"❌ Error: {e}")
    else:
        st.warning("⚠️ Please enter a text input.")