Spaces:
Sleeping
Sleeping
File size: 2,434 Bytes
0105e3b af09235 5628a29 0105e3b 58c2482 b6af5ee 5628a29 ea4634d 58c2482 ea4634d 58c2482 af09235 ea4634d b6af5ee ea4634d af09235 58c2482 ea4634d 58c2482 e94ec88 b6af5ee e94ec88 b6af5ee e94ec88 b6af5ee e94ec88 5628a29 b6af5ee 38207ff b6af5ee 38207ff b6af5ee 38207ff 5628a29 e94ec88 b6af5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import streamlit as st
import pandas as pd
import google.generativeai as genai # Import Generative AI library
import os
from pymongo import MongoClient
from db import insert_data_if_empty, get_mongo_client # Import functions from db.py
from transformers import pipeline # Import sentiment analysis pipeline
# 🔑 Fetch API key from Hugging Face Secrets
GEMINI_API_KEY = os.getenv("gemini_api")
if GEMINI_API_KEY:
genai.configure(api_key=GEMINI_API_KEY)
else:
st.error("⚠️ Google API key is missing! Set it in Hugging Face Secrets.")
#### **1. Ensure Data is Inserted Before Display**
insert_data_if_empty()
#### **2. MongoDB Connection**
collection = get_mongo_client()
#### **3. Load Sentiment Analysis Model**
sentiment_pipeline = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
def analyze_sentiment(text):
"""Analyze sentiment using RoBERTa model."""
sentiment_result = sentiment_pipeline(text)[0]['label']
return sentiment_result # Returns "LABEL_0", "LABEL_1", or "LABEL_2"
#### **4. Streamlit App to Display Data**
st.title("📊 MongoDB Data Viewer with AI & Sentiment Analysis")
# Show first 5 rows from MongoDB
st.subheader("First 5 Rows from Database")
data = list(collection.find({}, {"_id": 0}).limit(5))
if data:
st.write(pd.DataFrame(data))
else:
st.warning("⚠️ No data found. Try refreshing the app.")
# Button to show full MongoDB data
if st.button("Show Complete Data"):
all_data = list(collection.find({}, {"_id": 0}))
st.write(pd.DataFrame(all_data))
#### **5. AI Chatbot with Sentiment Analysis**
st.subheader("🤖 AI Chatbot with Sentiment Analysis")
# User input for chatbot
user_prompt = st.text_input("Paste text here for AI sentiment analysis:")
if st.button("Get AI Response & Sentiment"):
if user_prompt:
try:
# Generate AI response
model = genai.GenerativeModel("gemini-1.5-pro")
response = model.generate_content(user_prompt)
ai_response = response.text
# Analyze sentiment
sentiment = analyze_sentiment(ai_response)
# Display results
st.write("### AI Response:")
st.write(ai_response)
st.write(f"**Sentiment Analysis:** {sentiment}")
except Exception as e:
st.error(f"❌ Error: {e}")
else:
st.warning("⚠️ Please enter a text input.")
|