Spaces:
Sleeping
Sleeping
KrSharangrav
commited on
Commit
·
af09235
1
Parent(s):
3c80a27
Creating the backup file and changing app.py for DB purpose
Browse files
app.py
CHANGED
@@ -1,21 +1,21 @@
|
|
1 |
from pymongo import MongoClient
|
|
|
|
|
|
|
2 |
|
|
|
3 |
def get_mongo_client():
|
4 |
-
client = MongoClient("mongodb+srv://
|
5 |
db = client["sentiment_db"]
|
6 |
return db["tweets"]
|
7 |
|
8 |
-
|
9 |
-
import pandas as pd
|
10 |
-
|
11 |
-
# Load dataset
|
12 |
-
df = pd.read_csv("https://huggingface.co/spaces/sharangrav24/SentimentAnalysis/resolve/main/sentiment140.csv")
|
13 |
-
|
14 |
-
#### *4. Sentiment Analysis using BERT-ROBERTA*
|
15 |
|
16 |
-
from
|
|
|
|
|
17 |
|
18 |
-
|
19 |
sentiment_pipeline = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
|
20 |
|
21 |
# Function to analyze sentiment
|
@@ -24,16 +24,20 @@ def analyze_sentiment(text):
|
|
24 |
|
25 |
df["sentiment"] = df["text"].apply(analyze_sentiment)
|
26 |
|
27 |
-
|
28 |
-
|
|
|
29 |
collection.insert_many(df.to_dict("records"))
|
30 |
|
31 |
-
####
|
32 |
-
import streamlit as st
|
33 |
-
|
34 |
st.title("Sentiment Analysis Dashboard")
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
37 |
st.write(df)
|
38 |
|
39 |
if st.button("Show MongoDB Data"):
|
|
|
1 |
from pymongo import MongoClient
|
2 |
+
import pandas as pd
|
3 |
+
from transformers import pipeline
|
4 |
+
import streamlit as st
|
5 |
|
6 |
+
#### **1. MongoDB Connection**
|
7 |
def get_mongo_client():
|
8 |
+
client = MongoClient("mongodb+srv://groupA:pythongroupA@sentimentcluster.4usfj.mongodb.net/?retryWrites=true&w=majority&appName=SentimentCluster")
|
9 |
db = client["sentiment_db"]
|
10 |
return db["tweets"]
|
11 |
|
12 |
+
collection = get_mongo_client()
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
#### **2. Load Dataset from Hugging Face**
|
15 |
+
csv_url = "https://huggingface.co/spaces/sharangrav24/SentimentAnalysis/resolve/main/sentiment140.csv"
|
16 |
+
df = pd.read_csv(csv_url)
|
17 |
|
18 |
+
#### **3. Sentiment Analysis using BERT-ROBERTA**
|
19 |
sentiment_pipeline = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
|
20 |
|
21 |
# Function to analyze sentiment
|
|
|
24 |
|
25 |
df["sentiment"] = df["text"].apply(analyze_sentiment)
|
26 |
|
27 |
+
#### **4. Upload Data to MongoDB**
|
28 |
+
# Convert DataFrame to dictionary and upload to MongoDB
|
29 |
+
collection.delete_many({}) # Optional: Clear existing data before inserting
|
30 |
collection.insert_many(df.to_dict("records"))
|
31 |
|
32 |
+
#### **5. Build Streamlit Dashboard**
|
|
|
|
|
33 |
st.title("Sentiment Analysis Dashboard")
|
34 |
|
35 |
+
# Show first 5 rows from MongoDB
|
36 |
+
st.subheader("First 5 Rows from Database")
|
37 |
+
data = list(collection.find({}, {"_id": 0}).limit(5))
|
38 |
+
st.write(pd.DataFrame(data))
|
39 |
+
|
40 |
+
if st.button("Show Complete Data"):
|
41 |
st.write(df)
|
42 |
|
43 |
if st.button("Show MongoDB Data"):
|
backup.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pymongo import MongoClient
|
2 |
+
|
3 |
+
def get_mongo_client():
|
4 |
+
client = MongoClient("mongodb+srv://GMP-21-03:[email protected]/?retryWrites=true&w=majority&appName=Cluster1")
|
5 |
+
db = client["sentiment_db"]
|
6 |
+
return db["tweets"]
|
7 |
+
|
8 |
+
#### *3. Load and Process Dataset*
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
# Load dataset
|
12 |
+
df = pd.read_csv("https://huggingface.co/spaces/sharangrav24/SentimentAnalysis/resolve/main/sentiment140.csv")
|
13 |
+
|
14 |
+
#### *4. Sentiment Analysis using BERT-ROBERTA*
|
15 |
+
|
16 |
+
from transformers import pipeline
|
17 |
+
|
18 |
+
# Load Hugging Face model
|
19 |
+
sentiment_pipeline = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
|
20 |
+
|
21 |
+
# Function to analyze sentiment
|
22 |
+
def analyze_sentiment(text):
|
23 |
+
return sentiment_pipeline(text)[0]['label']
|
24 |
+
|
25 |
+
df["sentiment"] = df["text"].apply(analyze_sentiment)
|
26 |
+
|
27 |
+
# Save results to MongoDB
|
28 |
+
collection = get_mongo_client()
|
29 |
+
collection.insert_many(df.to_dict("records"))
|
30 |
+
|
31 |
+
#### *5. Build Streamlit Dashboard*
|
32 |
+
import streamlit as st
|
33 |
+
|
34 |
+
st.title("Sentiment Analysis Dashboard")
|
35 |
+
|
36 |
+
if st.button("Show Data"):
|
37 |
+
st.write(df)
|
38 |
+
|
39 |
+
if st.button("Show MongoDB Data"):
|
40 |
+
data = list(collection.find({}, {"_id": 0}))
|
41 |
+
st.write(pd.DataFrame(data))
|