Spaces:
Sleeping
Sleeping
KrSharangrav
commited on
Commit
·
af09235
1
Parent(s):
3c80a27
Creating the backup file and changing app.py for DB purpose
Browse files
app.py
CHANGED
|
@@ -1,21 +1,21 @@
|
|
| 1 |
from pymongo import MongoClient
|
|
|
|
|
|
|
|
|
|
| 2 |
|
|
|
|
| 3 |
def get_mongo_client():
|
| 4 |
-
client = MongoClient("mongodb+srv://
|
| 5 |
db = client["sentiment_db"]
|
| 6 |
return db["tweets"]
|
| 7 |
|
| 8 |
-
|
| 9 |
-
import pandas as pd
|
| 10 |
-
|
| 11 |
-
# Load dataset
|
| 12 |
-
df = pd.read_csv("https://huggingface.co/spaces/sharangrav24/SentimentAnalysis/resolve/main/sentiment140.csv")
|
| 13 |
-
|
| 14 |
-
#### *4. Sentiment Analysis using BERT-ROBERTA*
|
| 15 |
|
| 16 |
-
from
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
sentiment_pipeline = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
|
| 20 |
|
| 21 |
# Function to analyze sentiment
|
|
@@ -24,16 +24,20 @@ def analyze_sentiment(text):
|
|
| 24 |
|
| 25 |
df["sentiment"] = df["text"].apply(analyze_sentiment)
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
|
|
|
| 29 |
collection.insert_many(df.to_dict("records"))
|
| 30 |
|
| 31 |
-
####
|
| 32 |
-
import streamlit as st
|
| 33 |
-
|
| 34 |
st.title("Sentiment Analysis Dashboard")
|
| 35 |
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
st.write(df)
|
| 38 |
|
| 39 |
if st.button("Show MongoDB Data"):
|
|
|
|
| 1 |
from pymongo import MongoClient
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
import streamlit as st
|
| 5 |
|
| 6 |
+
#### **1. MongoDB Connection**
|
| 7 |
def get_mongo_client():
|
| 8 |
+
client = MongoClient("mongodb+srv://groupA:pythongroupA@sentimentcluster.4usfj.mongodb.net/?retryWrites=true&w=majority&appName=SentimentCluster")
|
| 9 |
db = client["sentiment_db"]
|
| 10 |
return db["tweets"]
|
| 11 |
|
| 12 |
+
collection = get_mongo_client()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
#### **2. Load Dataset from Hugging Face**
|
| 15 |
+
csv_url = "https://huggingface.co/spaces/sharangrav24/SentimentAnalysis/resolve/main/sentiment140.csv"
|
| 16 |
+
df = pd.read_csv(csv_url)
|
| 17 |
|
| 18 |
+
#### **3. Sentiment Analysis using BERT-ROBERTA**
|
| 19 |
sentiment_pipeline = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
|
| 20 |
|
| 21 |
# Function to analyze sentiment
|
|
|
|
| 24 |
|
| 25 |
df["sentiment"] = df["text"].apply(analyze_sentiment)
|
| 26 |
|
| 27 |
+
#### **4. Upload Data to MongoDB**
|
| 28 |
+
# Convert DataFrame to dictionary and upload to MongoDB
|
| 29 |
+
collection.delete_many({}) # Optional: Clear existing data before inserting
|
| 30 |
collection.insert_many(df.to_dict("records"))
|
| 31 |
|
| 32 |
+
#### **5. Build Streamlit Dashboard**
|
|
|
|
|
|
|
| 33 |
st.title("Sentiment Analysis Dashboard")
|
| 34 |
|
| 35 |
+
# Show first 5 rows from MongoDB
|
| 36 |
+
st.subheader("First 5 Rows from Database")
|
| 37 |
+
data = list(collection.find({}, {"_id": 0}).limit(5))
|
| 38 |
+
st.write(pd.DataFrame(data))
|
| 39 |
+
|
| 40 |
+
if st.button("Show Complete Data"):
|
| 41 |
st.write(df)
|
| 42 |
|
| 43 |
if st.button("Show MongoDB Data"):
|
backup.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pymongo import MongoClient
|
| 2 |
+
|
| 3 |
+
def get_mongo_client():
|
| 4 |
+
client = MongoClient("mongodb+srv://GMP-21-03:[email protected]/?retryWrites=true&w=majority&appName=Cluster1")
|
| 5 |
+
db = client["sentiment_db"]
|
| 6 |
+
return db["tweets"]
|
| 7 |
+
|
| 8 |
+
#### *3. Load and Process Dataset*
|
| 9 |
+
import pandas as pd
|
| 10 |
+
|
| 11 |
+
# Load dataset
|
| 12 |
+
df = pd.read_csv("https://huggingface.co/spaces/sharangrav24/SentimentAnalysis/resolve/main/sentiment140.csv")
|
| 13 |
+
|
| 14 |
+
#### *4. Sentiment Analysis using BERT-ROBERTA*
|
| 15 |
+
|
| 16 |
+
from transformers import pipeline
|
| 17 |
+
|
| 18 |
+
# Load Hugging Face model
|
| 19 |
+
sentiment_pipeline = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
|
| 20 |
+
|
| 21 |
+
# Function to analyze sentiment
|
| 22 |
+
def analyze_sentiment(text):
|
| 23 |
+
return sentiment_pipeline(text)[0]['label']
|
| 24 |
+
|
| 25 |
+
df["sentiment"] = df["text"].apply(analyze_sentiment)
|
| 26 |
+
|
| 27 |
+
# Save results to MongoDB
|
| 28 |
+
collection = get_mongo_client()
|
| 29 |
+
collection.insert_many(df.to_dict("records"))
|
| 30 |
+
|
| 31 |
+
#### *5. Build Streamlit Dashboard*
|
| 32 |
+
import streamlit as st
|
| 33 |
+
|
| 34 |
+
st.title("Sentiment Analysis Dashboard")
|
| 35 |
+
|
| 36 |
+
if st.button("Show Data"):
|
| 37 |
+
st.write(df)
|
| 38 |
+
|
| 39 |
+
if st.button("Show MongoDB Data"):
|
| 40 |
+
data = list(collection.find({}, {"_id": 0}))
|
| 41 |
+
st.write(pd.DataFrame(data))
|