Spaces:
Sleeping
Sleeping
File size: 5,540 Bytes
7268351 f5b718b b83a640 7268351 f5b718b 7268351 f5b718b 7268351 f5b718b 7268351 f5b718b 7268351 5a94c8e f763dd0 7268351 f5b718b 7268351 f5b718b 7268351 5a94c8e f763dd0 5a94c8e f5b718b 5a94c8e f763dd0 5a94c8e f763dd0 5a94c8e 7268351 5a94c8e 7268351 f5b718b 7268351 f5b718b 5a94c8e 7268351 f5b718b 5a94c8e f763dd0 5a94c8e 7268351 5a94c8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import os
import streamlit as st
import google.generativeai as genai
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
# π Fetch API key from Hugging Face Secrets
GEMINI_API_KEY = os.getenv("gemini_api")
if GEMINI_API_KEY:
genai.configure(api_key=GEMINI_API_KEY)
else:
st.error("β οΈ Google API key is missing! Set it in Hugging Face Secrets.")
# Define path for the fine-tuned model
FINE_TUNED_MODEL_DIR = "fine-tuned-sentiment-model"
# Function to fine-tune sentiment analysis model using sentiment140.csv
def fine_tune_model():
st.info("Fine-tuning sentiment model. This may take a while...")
# Load the dataset from the local CSV file.
# Ensure that 'sentiment140.csv' is in your working directory.
try:
dataset = load_dataset('csv', data_files={'train': 'sentiment140.csv'}, encoding='ISO-8859-1')
except Exception as e:
st.error(f"β Error loading dataset: {e}")
return None, None
# Convert sentiment labels: sentiment140 labels are 0 (Negative), 2 (Neutral), 4 (Positive).
# We map them to 0,1,2 respectively.
def convert_labels(example):
mapping = {0: 0, 2: 1, 4: 2}
example["label"] = mapping[int(example["target"])]
return example
dataset = dataset.map(convert_labels)
# Base model name
base_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
# Initialize tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
model = AutoModelForSequenceClassification.from_pretrained(base_model_name, num_labels=3)
# Tokenize the dataset; assuming the CSV has a column named "text"
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=128)
tokenized_dataset = dataset.map(tokenize_function, batched=True)
# Set training arguments (for demo purposes, we use 1 epoch; adjust as needed)
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=1,
per_device_train_batch_size=8,
logging_steps=10,
save_steps=50,
evaluation_strategy="no",
learning_rate=2e-5,
weight_decay=0.01,
logging_dir='./logs',
disable_tqdm=False
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"]
)
trainer.train()
# Save the fine-tuned model and tokenizer
model.save_pretrained(FINE_TUNED_MODEL_DIR)
tokenizer.save_pretrained(FINE_TUNED_MODEL_DIR)
st.success("β
Fine-tuning complete and model saved.")
return model, tokenizer
# Load (or fine-tune) the sentiment analysis model and tokenizer
if not os.path.exists(FINE_TUNED_MODEL_DIR):
model, tokenizer = fine_tune_model()
if model is None or tokenizer is None:
st.error("β Failed to fine-tune the sentiment analysis model.")
else:
tokenizer = AutoTokenizer.from_pretrained(FINE_TUNED_MODEL_DIR)
model = AutoModelForSequenceClassification.from_pretrained(FINE_TUNED_MODEL_DIR)
# Initialize sentiment analysis pipeline using the fine-tuned model
try:
sentiment_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
except Exception as e:
st.error(f"β Error loading sentiment pipeline: {e}")
# Load Topic Extraction Model
try:
topic_pipeline = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
except Exception as e:
st.error(f"β Error loading topic extraction model: {e}")
# Predefined topic labels for classification
TOPIC_LABELS = [
"Technology", "Politics", "Business", "Sports", "Entertainment",
"Health", "Science", "Education", "Finance", "Travel", "Food"
]
# Function to analyze sentiment
def analyze_sentiment(text):
try:
sentiment_result = sentiment_pipeline(text)[0]
label = sentiment_result['label'] # e.g., "LABEL_0", "LABEL_1", "LABEL_2"
score = sentiment_result['score'] # Confidence score
# Map model labels to human-readable format
sentiment_mapping = {
"LABEL_0": "Negative",
"LABEL_1": "Neutral",
"LABEL_2": "Positive"
}
return sentiment_mapping.get(label, "Unknown"), score
except Exception as e:
return f"Error analyzing sentiment: {e}", None
# Function to extract topic
def extract_topic(text):
try:
topic_result = topic_pipeline(text, TOPIC_LABELS)
top_topic = topic_result["labels"][0] # Highest confidence topic
confidence = topic_result["scores"][0]
return top_topic, confidence
except Exception as e:
return f"Error extracting topic: {e}", None
# Function to generate AI response, sentiment, and topic
def chatbot_response(user_prompt):
if not user_prompt:
return None, None, None, None, None
try:
# Generate AI Response using Gemini
model_gen = genai.GenerativeModel("gemini-1.5-pro")
ai_response = model_gen.generate_content(user_prompt)
# Run Sentiment Analysis
sentiment_label, sentiment_confidence = analyze_sentiment(user_prompt)
# Run Topic Extraction
topic_label, topic_confidence = extract_topic(user_prompt)
return ai_response.text, sentiment_label, sentiment_confidence, topic_label, topic_confidence
except Exception as e:
return f"β Error: {e}", None, None, None, None
|