File size: 5,731 Bytes
7268351
 
 
f5b718b
 
b83a640
f16063a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7268351
 
 
 
 
 
f16063a
f5b718b
 
f16063a
f5b718b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f16063a
f5b718b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f16063a
f5b718b
 
 
 
 
 
 
7268351
f16063a
7268351
f5b718b
7268351
f5b718b
7268351
5a94c8e
 
 
 
 
 
 
 
 
 
 
f763dd0
7268351
 
 
 
f16063a
 
7268351
 
 
 
 
 
 
 
 
5a94c8e
 
f763dd0
5a94c8e
f16063a
f5b718b
5a94c8e
f763dd0
5a94c8e
f763dd0
f16063a
7268351
 
5a94c8e
7268351
 
f5b718b
 
 
7268351
f16063a
5a94c8e
7268351
f16063a
5a94c8e
f763dd0
5a94c8e
7268351
5a94c8e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import streamlit as st
import google.generativeai as genai
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset

# --- Monkey Patch for Accelerator ---
try:
    import accelerate
    from accelerate import Accelerator
    import inspect
    # If the Accelerator.__init__ does not accept "dispatch_batches", remove it from kwargs.
    if 'dispatch_batches' not in inspect.signature(Accelerator.__init__).parameters:
        old_init = Accelerator.__init__
        def new_init(self, *args, **kwargs):
            if 'dispatch_batches' in kwargs:
                kwargs.pop('dispatch_batches')
            old_init(self, *args, **kwargs)
        Accelerator.__init__ = new_init
except Exception as e:
    st.error(f"Error patching Accelerator: {e}")

# --- Configure Gemini API ---
GEMINI_API_KEY = os.getenv("gemini_api")
if GEMINI_API_KEY:
    genai.configure(api_key=GEMINI_API_KEY)
else:
    st.error("⚠️ Google API key is missing! Set it in Hugging Face Secrets.")

# Path to save/load the fine-tuned model
FINE_TUNED_MODEL_DIR = "fine-tuned-sentiment-model"

# --- Fine-tune the Sentiment Model ---
def fine_tune_model():
    st.info("Fine-tuning sentiment model. This may take a while...")

    # Load the dataset from the local CSV file.
    try:
        dataset = load_dataset('csv', data_files={'train': 'sentiment140.csv'}, encoding='ISO-8859-1')
    except Exception as e:
        st.error(f"❌ Error loading dataset: {e}")
        return None, None

    # Convert sentiment labels: sentiment140 labels are 0 (Negative), 2 (Neutral), 4 (Positive).
    def convert_labels(example):
        mapping = {0: 0, 2: 1, 4: 2}
        example["label"] = mapping[int(example["target"])]
        return example

    dataset = dataset.map(convert_labels)

    base_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
    tokenizer = AutoTokenizer.from_pretrained(base_model_name)
    model = AutoModelForSequenceClassification.from_pretrained(base_model_name, num_labels=3)

    # Tokenize the dataset; assuming the CSV has a column named "text"
    def tokenize_function(examples):
        return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=128)
    tokenized_dataset = dataset.map(tokenize_function, batched=True)

    training_args = TrainingArguments(
        output_dir="./results",
        num_train_epochs=1,                  # For demonstration, we train for 1 epoch.
        per_device_train_batch_size=8,
        logging_steps=10,
        save_steps=50,
        evaluation_strategy="no",
        learning_rate=2e-5,
        weight_decay=0.01,
        logging_dir='./logs',
        disable_tqdm=False
    )

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_dataset["train"]
    )

    trainer.train()

    model.save_pretrained(FINE_TUNED_MODEL_DIR)
    tokenizer.save_pretrained(FINE_TUNED_MODEL_DIR)
    st.success("βœ… Fine-tuning complete and model saved.")
    return model, tokenizer

# Load or fine-tune the sentiment model
if not os.path.exists(FINE_TUNED_MODEL_DIR):
    model, tokenizer = fine_tune_model()
    if model is None or tokenizer is None:
        st.error("❌ Failed to fine-tune the sentiment analysis model.")
else:
    tokenizer = AutoTokenizer.from_pretrained(FINE_TUNED_MODEL_DIR)
    model = AutoModelForSequenceClassification.from_pretrained(FINE_TUNED_MODEL_DIR)

# Create sentiment analysis pipeline from the fine-tuned model
try:
    sentiment_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
except Exception as e:
    st.error(f"❌ Error loading sentiment pipeline: {e}")

# Load Topic Extraction Model
try:
    topic_pipeline = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
except Exception as e:
    st.error(f"❌ Error loading topic extraction model: {e}")

# Predefined topic labels for classification
TOPIC_LABELS = [
    "Technology", "Politics", "Business", "Sports", "Entertainment",
    "Health", "Science", "Education", "Finance", "Travel", "Food"
]

# Function to analyze sentiment
def analyze_sentiment(text):
    try:
        sentiment_result = sentiment_pipeline(text)[0]
        label = sentiment_result['label']
        score = sentiment_result['score']
        sentiment_mapping = {
            "LABEL_0": "Negative",
            "LABEL_1": "Neutral",
            "LABEL_2": "Positive"
        }
        return sentiment_mapping.get(label, "Unknown"), score
    except Exception as e:
        return f"Error analyzing sentiment: {e}", None

# Function to extract topic
def extract_topic(text):
    try:
        topic_result = topic_pipeline(text, TOPIC_LABELS)
        top_topic = topic_result["labels"][0]
        confidence = topic_result["scores"][0]
        return top_topic, confidence
    except Exception as e:
        return f"Error extracting topic: {e}", None

# Function to generate AI response along with sentiment and topic analysis
def chatbot_response(user_prompt):
    if not user_prompt:
        return None, None, None, None, None

    try:
        # Generate AI Response using Gemini
        model_gen = genai.GenerativeModel("gemini-1.5-pro")
        ai_response = model_gen.generate_content(user_prompt)

        # Sentiment Analysis
        sentiment_label, sentiment_confidence = analyze_sentiment(user_prompt)

        # Topic Extraction
        topic_label, topic_confidence = extract_topic(user_prompt)

        return ai_response.text, sentiment_label, sentiment_confidence, topic_label, topic_confidence
    except Exception as e:
        return f"❌ Error: {e}", None, None, None, None