Spaces:
Sleeping
Sleeping
File size: 2,886 Bytes
0105e3b af09235 5628a29 0105e3b 58c2482 bfd707a 5628a29 ea4634d 58c2482 ea4634d 58c2482 af09235 ea4634d bfd707a ea4634d af09235 58c2482 ea4634d 58c2482 e94ec88 bfd707a b6af5ee e94ec88 bfd707a e94ec88 bfd707a e94ec88 5628a29 bfd707a b6af5ee bfd707a 38207ff bfd707a 38207ff bfd707a b6af5ee bfd707a 38207ff 5628a29 e94ec88 bfd707a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import streamlit as st
import pandas as pd
import google.generativeai as genai # Import Generative AI library
import os
from pymongo import MongoClient
from db import insert_data_if_empty, get_mongo_client # Import functions from db.py
from transformers import pipeline # Import Hugging Face transformers for sentiment analysis
# 🔑 Fetch API key from Hugging Face Secrets
GEMINI_API_KEY = os.getenv("gemini_api")
if GEMINI_API_KEY:
genai.configure(api_key=GEMINI_API_KEY)
else:
st.error("⚠️ Google API key is missing! Set it in Hugging Face Secrets.")
#### **1. Ensure Data is Inserted Before Display**
insert_data_if_empty()
#### **2. MongoDB Connection**
collection = get_mongo_client()
#### **3. Streamlit App to Display Data**
st.title("📊 MongoDB Data Viewer with AI Sentiment Chatbot")
# Show first 5 rows from MongoDB
st.subheader("First 5 Rows from Database")
data = list(collection.find({}, {"_id": 0}).limit(5))
if data:
st.write(pd.DataFrame(data))
else:
st.warning("⚠️ No data found. Try refreshing the app.")
# Button to show full MongoDB data
if st.button("Show Complete Data"):
all_data = list(collection.find({}, {"_id": 0}))
st.write(pd.DataFrame(all_data))
#### **4. Load Sentiment Analysis Model (RoBERTa)**
sentiment_pipeline = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
# Function to analyze sentiment
def analyze_sentiment(text):
sentiment_result = sentiment_pipeline(text)[0]
label = sentiment_result['label'] # Extract sentiment label (POSITIVE, NEGATIVE, NEUTRAL)
score = sentiment_result['score'] # Extract confidence score
# Convert labels to a readable format
sentiment_mapping = {
"LABEL_0": "Negative",
"LABEL_1": "Neutral",
"LABEL_2": "Positive"
}
return sentiment_mapping.get(label, "Unknown"), score
#### **5. AI Chatbot with Sentiment Analysis**
st.subheader("🤖 AI Chatbot with Sentiment Analysis")
# User input for chatbot
user_prompt = st.text_area("Ask AI something or paste text for sentiment analysis:")
if st.button("Analyze Sentiment & Get AI Response"):
if user_prompt:
try:
# AI Response from Gemini
model = genai.GenerativeModel("gemini-1.5-pro")
ai_response = model.generate_content(user_prompt)
# Sentiment Analysis
sentiment_label, confidence = analyze_sentiment(user_prompt)
# Display AI Response & Sentiment Analysis
st.write("### AI Response:")
st.write(ai_response.text)
st.write("### Sentiment Analysis:")
st.write(f"**Sentiment:** {sentiment_label} ({confidence:.2f} confidence)")
except Exception as e:
st.error(f"❌ Error: {e}")
else:
st.warning("⚠️ Please enter a question or text for sentiment analysis.")
|