File size: 2,886 Bytes
0105e3b
af09235
5628a29
 
0105e3b
58c2482
bfd707a
5628a29
 
 
 
 
 
 
 
ea4634d
58c2482
 
ea4634d
58c2482
af09235
ea4634d
bfd707a
 
ea4634d
af09235
 
 
 
58c2482
ea4634d
58c2482
 
 
 
 
 
 
e94ec88
bfd707a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6af5ee
 
e94ec88
 
bfd707a
e94ec88
bfd707a
e94ec88
5628a29
bfd707a
b6af5ee
bfd707a
38207ff
bfd707a
 
38207ff
bfd707a
b6af5ee
bfd707a
 
 
 
38207ff
5628a29
 
e94ec88
bfd707a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import streamlit as st
import pandas as pd
import google.generativeai as genai  # Import Generative AI library
import os
from pymongo import MongoClient
from db import insert_data_if_empty, get_mongo_client  # Import functions from db.py
from transformers import pipeline  # Import Hugging Face transformers for sentiment analysis

# 🔑 Fetch API key from Hugging Face Secrets
GEMINI_API_KEY = os.getenv("gemini_api")

if GEMINI_API_KEY:
    genai.configure(api_key=GEMINI_API_KEY)
else:
    st.error("⚠️ Google API key is missing! Set it in Hugging Face Secrets.")

#### **1. Ensure Data is Inserted Before Display**
insert_data_if_empty()

#### **2. MongoDB Connection**
collection = get_mongo_client()

#### **3. Streamlit App to Display Data**
st.title("📊 MongoDB Data Viewer with AI Sentiment Chatbot")

# Show first 5 rows from MongoDB
st.subheader("First 5 Rows from Database")
data = list(collection.find({}, {"_id": 0}).limit(5))

if data:
    st.write(pd.DataFrame(data))
else:
    st.warning("⚠️ No data found. Try refreshing the app.")

# Button to show full MongoDB data
if st.button("Show Complete Data"):
    all_data = list(collection.find({}, {"_id": 0}))
    st.write(pd.DataFrame(all_data))

#### **4. Load Sentiment Analysis Model (RoBERTa)**
sentiment_pipeline = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")

# Function to analyze sentiment
def analyze_sentiment(text):
    sentiment_result = sentiment_pipeline(text)[0]
    label = sentiment_result['label']  # Extract sentiment label (POSITIVE, NEGATIVE, NEUTRAL)
    score = sentiment_result['score']  # Extract confidence score

    # Convert labels to a readable format
    sentiment_mapping = {
        "LABEL_0": "Negative",
        "LABEL_1": "Neutral",
        "LABEL_2": "Positive"
    }
    return sentiment_mapping.get(label, "Unknown"), score

#### **5. AI Chatbot with Sentiment Analysis**
st.subheader("🤖 AI Chatbot with Sentiment Analysis")

# User input for chatbot
user_prompt = st.text_area("Ask AI something or paste text for sentiment analysis:")

if st.button("Analyze Sentiment & Get AI Response"):
    if user_prompt:
        try:
            # AI Response from Gemini
            model = genai.GenerativeModel("gemini-1.5-pro")
            ai_response = model.generate_content(user_prompt)

            # Sentiment Analysis
            sentiment_label, confidence = analyze_sentiment(user_prompt)

            # Display AI Response & Sentiment Analysis
            st.write("### AI Response:")
            st.write(ai_response.text)

            st.write("### Sentiment Analysis:")
            st.write(f"**Sentiment:** {sentiment_label} ({confidence:.2f} confidence)")

        except Exception as e:
            st.error(f"❌ Error: {e}")
    else:
        st.warning("⚠️ Please enter a question or text for sentiment analysis.")