File size: 2,630 Bytes
0105e3b
af09235
5628a29
 
0105e3b
58c2482
38207ff
5628a29
 
 
 
 
 
 
 
ea4634d
58c2482
 
ea4634d
58c2482
af09235
ea4634d
58c2482
38207ff
ea4634d
af09235
 
 
 
58c2482
ea4634d
58c2482
 
 
 
 
 
 
e94ec88
38207ff
 
 
 
 
e94ec88
 
38207ff
e94ec88
38207ff
e94ec88
5628a29
38207ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5628a29
 
e94ec88
38207ff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import streamlit as st
import pandas as pd
import google.generativeai as genai  # Import Generative AI library
import os
from pymongo import MongoClient
from db import insert_data_if_empty, get_mongo_client  # Import functions from db.py
from transformers import pipeline  # Import sentiment analysis model

# 🔑 Fetch API key from Hugging Face Secrets
GEMINI_API_KEY = os.getenv("gemini_api")

if GEMINI_API_KEY:
    genai.configure(api_key=GEMINI_API_KEY)
else:
    st.error("⚠️ Google API key is missing! Set it in Hugging Face Secrets.")

#### **1. Ensure Data is Inserted Before Display**
insert_data_if_empty()

#### **2. MongoDB Connection**
collection = get_mongo_client()

#### **3. Streamlit App to Display Data**
st.title("📊 MongoDB Data Viewer with AI Sentiment Chatbot")

# Show first 5 rows from MongoDB
st.subheader("First 5 Rows from Database")
data = list(collection.find({}, {"_id": 0}).limit(5))

if data:
    st.write(pd.DataFrame(data))
else:
    st.warning("⚠️ No data found. Try refreshing the app.")

# Button to show full MongoDB data
if st.button("Show Complete Data"):
    all_data = list(collection.find({}, {"_id": 0}))
    st.write(pd.DataFrame(all_data))

#### **4. Sentiment Analysis Chatbot**
st.subheader("🤖 AI Sentiment Analysis Chatbot")

# Load Hugging Face sentiment analysis model (RoBERTa)
sentiment_pipeline = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")

# User input for chatbot
user_prompt = st.text_input("Enter a text for sentiment analysis:")

if st.button("Analyze Sentiment"):
    if user_prompt:
        try:
            # Perform sentiment analysis
            sentiment_result = sentiment_pipeline(user_prompt)[0]

            # Display sentiment results
            st.write("### Sentiment Analysis Result:")
            st.write(f"**Sentiment:** {sentiment_result['label']}")
            st.write(f"**Confidence Score:** {sentiment_result['score']:.4f}")

            # Fetch similar sentiment examples from MongoDB
            sentiment_label = sentiment_result["label"].lower()
            matching_texts = list(collection.find({"sentiment": sentiment_label}, {"_id": 0, "text": 1}).limit(3))

            if matching_texts:
                st.write("### Similar Sentiment Examples from MongoDB:")
                for item in matching_texts:
                    st.write(f"- {item['text']}")
            else:
                st.write("No similar sentiment examples found in MongoDB.")

        except Exception as e:
            st.error(f"❌ Error: {e}")
    else:
        st.warning("⚠️ Please enter some text.")