File size: 1,462 Bytes
0105e3b
af09235
7268351
 
ea4634d
7268351
 
ea4634d
7268351
 
ea4634d
7268351
 
ea4634d
7268351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e94ec88
7268351
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import streamlit as st
import pandas as pd
from db import insert_data_if_empty, get_mongo_client
from chatbot import chatbot_response  # Import chatbot functionality

#### **1. Ensure Data is Inserted Before Display**
insert_data_if_empty()

#### **2. MongoDB Connection**
collection = get_mongo_client()

#### **3. Streamlit App UI**
st.title("📊 MongoDB Data Viewer with AI Sentiment Chatbot")

# Show first 5 rows from MongoDB
st.subheader("First 5 Rows from Database")
data = list(collection.find({}, {"_id": 0}).limit(5))

if data:
    st.write(pd.DataFrame(data))
else:
    st.warning("⚠️ No data found. Try refreshing the app.")

# Button to show full MongoDB data
if st.button("Show Complete Data"):
    all_data = list(collection.find({}, {"_id": 0}))
    st.write(pd.DataFrame(all_data))

#### **4. AI Chatbot with Sentiment Analysis**
st.subheader("🤖 AI Chatbot with Sentiment Analysis")

# User input for chatbot
user_prompt = st.text_area("Ask AI something or paste text for sentiment analysis:")

if st.button("Analyze Sentiment & Get AI Response"):
    ai_response, sentiment_label, confidence = chatbot_response(user_prompt)

    if ai_response:
        st.write("### AI Response:")
        st.write(ai_response)

        st.write("### Sentiment Analysis:")
        st.write(f"**Sentiment:** {sentiment_label} ({confidence:.2f} confidence)")
    else:
        st.warning("⚠️ Please enter a question or text for sentiment analysis.")