Spaces:
Sleeping
Sleeping
File size: 1,769 Bytes
0105e3b af09235 0105e3b af09235 ea4634d af09235 ea4634d 0105e3b ea4634d af09235 ea4634d af09235 0105e3b ea4634d af09235 0105e3b ea4634d af09235 ea4634d 0105e3b ea4634d af09235 0105e3b ea4634d af09235 0105e3b af09235 ea4634d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import streamlit as st
import pandas as pd
from pymongo import MongoClient
from transformers import pipeline
#### **1. MongoDB Connection**
def get_mongo_client():
client = MongoClient("mongodb+srv://GMP-21-03:[email protected]/?retryWrites=true&w=majority&appName=Cluster1")
db = client["sentiment_db"]
return db["tweets"]
collection = get_mongo_client()
#### **2. Load Dataset from Hugging Face**
csv_url = "https://huggingface.co/spaces/sharangrav24/SentimentAnalysis/resolve/main/sentiment140.csv"
try:
df = pd.read_csv(csv_url, encoding="ISO-8859-1", errors="replace") # Fix encoding issue
except Exception as e:
st.error(f"Error loading dataset: {e}")
st.stop()
st.success("Dataset Loaded Successfully!")
#### **3. Sentiment Analysis using BERT-ROBERTA**
st.info("Running Sentiment Analysis...")
sentiment_pipeline = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
# Function to analyze sentiment
def analyze_sentiment(text):
return sentiment_pipeline(text)[0]['label']
df["sentiment"] = df["text"].apply(analyze_sentiment)
#### **4. Upload Data to MongoDB**
collection.delete_many({}) # Optional: Clear existing data before inserting
collection.insert_many(df.to_dict("records"))
st.success("Data Uploaded to MongoDB!")
#### **5. Build Streamlit Dashboard**
st.title("📊 Sentiment Analysis Dashboard")
# Show first 5 rows from MongoDB
st.subheader("First 5 Rows from Database")
data = list(collection.find({}, {"_id": 0}).limit(5))
st.write(pd.DataFrame(data))
# Buttons to display more data
if st.button("Show Complete Data"):
st.write(df)
if st.button("Show MongoDB Data"):
data = list(collection.find({}, {"_id": 0}))
st.write(pd.DataFrame(data))
|