README / README.md
NimaBoscarino's picture
Update README.md
acfccbd
|
raw
history blame
4.16 kB
---
title: README
emoji: ❤️
colorFrom: red
colorTo: red
sdk: static
pinned: false
---
<div class="lg:col-span-3">
<p class="mb-4">
SentenceTransformers 🤗 is a Python framework for state-of-the-art sentence, text and image embeddings.
</p>
<p class="mb-4">
Install the <a
href="https://www.sbert.net/"
>Sentence Transformers</a
>
library.
</p>
<div
class="p-4 bg-gradient-to-b from-gray-50-to-white border border-gray-100 rounded-lg relative mb-4"
>
<pre class="break-words leading-1 whitespace-pre-line text-xs md:text-sm text-gray-800">
pip install -U sentence-transformers
</pre>
</div>
</p>
<div class="lg:col-span-3">
<p class="mb-4">
The usage is as simple as:
</p>
<div
class="p-4 bg-gradient-to-b from-gray-50-to-white border border-gray-100 rounded-lg relative mb-4"
>
<pre class="break-words leading-1 whitespace-pre-line text-xs md:text-sm text-gray-800">
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
#Sentences we want to encode. Example:
sentence = ['This framework generates embeddings for each input sentence']
#Sentences are encoded by calling model.encode()
embedding = model.encode(sentence)
</pre>
</div>
</div>
</div>
<div class="grid lg:grid-cols-3 gap-x-4 gap-y-7">
<div class="lg:col-span-3">
<p class="mb-4">
Hugging Face makes it easy to collaboratively build and showcase your <a
href="https://www.sbert.net/">Sentence Transformers</a
>
models! You can collaborate with your organization, upload and showcase your own models in your profile ❤️
</p>
</div>
<a href="https://www.sbert.net/" class="block overflow-hidden group">
<div
class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center bg-[#FA8072]"
>
<img alt="" src="https://huggingface.co/spaces/sentence-transformers/README/resolve/main/sbertLogo.png" class="w-40" />
</div>
<div class="underline">Documentation</div>
</a>
<a
href="https://github.com/UKPLab/sentence-transformers/blob/master/sentence_transformers/SentenceTransformer.py#L417"
class="block overflow-hidden group"
>
<div
class="w-full h-40 mb-2 bg-gray-900 group-hover:bg-gray-850 rounded-lg flex items-start justify-start overflow-hidden"
>
<img
alt=""
src="https://huggingface.co/spaces/sentence-transformers/README/resolve/main/push-to-hub.png"
class="w-full h-40 object-cover overflow-hidden"
/>
</div>
<div class="underline">Push your Sentence Transformers models to the Hub ❤️ </div>
</a>
<a
href="https://huggingface.co/models?library=sentence-transformers&sort=downloads"
class="block overflow-hidden group"
>
<div
class="w-full h-40 mb-2 bg-gray-900 group-hover:bg-gray-850 rounded-lg flex items-start justify-start overflow-hidden"
>
<img
alt=""
src="https://huggingface.co/spaces/sentence-transformers/README/resolve/main/sbert-hf.png"
class="w-full h-40 object-cover overflow-hidden"
/>
</div>
<div class="underline">Find all Sentence Transformers models on the 🤗 Hub</div>
</a>
<div class="lg:col-span-3">
<p class="mb-4">
To upload your Sentence Transformers models to the Hugging Face Hub log in with <code class="language-python">huggingface-cli login</code> and then use the <a
href="https://github.com/UKPLab/sentence-transformers/blob/master/sentence_transformers/SentenceTransformer.py#L417"
>save_to_hub</a
>
function within the Sentence Transformers library.
</p>
<div
class="p-4 bg-gradient-to-b from-gray-50-to-white border border-gray-100 rounded-lg relative mb-4"
>
<pre
class="break-words leading-1 whitespace-pre-line text-xs md:text-sm text-gray-800">
from sentence_transformers import SentenceTransformer
# Load or train a model
model = ...
# Push to Hub
model.save_to_hub("my_new_model")
</pre>
</div>
</p>
</div>