Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import json | |
# Load the model and tokenizer | |
model_id = "selvaonline/shopping-assistant" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForSequenceClassification.from_pretrained(model_id) | |
# Load the categories | |
try: | |
from huggingface_hub import hf_hub_download | |
categories_path = hf_hub_download(repo_id=model_id, filename="categories.json") | |
with open(categories_path, "r") as f: | |
categories = json.load(f) | |
except Exception as e: | |
print(f"Error loading categories: {str(e)}") | |
categories = ["electronics", "clothing", "home", "kitchen", "toys", "other"] | |
def classify_text(text): | |
""" | |
Classify the text using the model | |
""" | |
# Prepare the input | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
# Get the model prediction | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
predictions = torch.sigmoid(outputs.logits) | |
# Get the top categories | |
top_categories = [] | |
for i, score in enumerate(predictions[0]): | |
if score > 0.5: # Threshold for multi-label classification | |
top_categories.append((categories[i], score.item())) | |
# Sort by score | |
top_categories.sort(key=lambda x: x[1], reverse=True) | |
# Format the results | |
if top_categories: | |
result = f"Top categories for '{text}':\n\n" | |
for category, score in top_categories: | |
result += f"- {category}: {score:.4f}\n" | |
result += f"\nBased on your query, I would recommend looking for deals in the **{top_categories[0][0]}** category." | |
else: | |
result = f"No categories found for '{text}'. Please try a different query." | |
return result | |
# Create the Gradio interface | |
demo = gr.Interface( | |
fn=classify_text, | |
inputs=gr.Textbox( | |
lines=2, | |
placeholder="Enter your shopping query here...", | |
label="Shopping Query" | |
), | |
outputs=gr.Markdown(label="Results"), | |
title="Shopping Assistant", | |
description=""" | |
This demo shows how to use the Shopping Assistant model to classify shopping queries into categories. | |
Enter a shopping query below to see which categories it belongs to. | |
Examples: | |
- "I'm looking for headphones" | |
- "Do you have any kitchen appliance deals?" | |
- "Show me the best laptop deals" | |
- "I need a new smart TV" | |
""", | |
examples=[ | |
["I'm looking for headphones"], | |
["Do you have any kitchen appliance deals?"], | |
["Show me the best laptop deals"], | |
["I need a new smart TV"] | |
], | |
theme=gr.themes.Soft() | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() | |