Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
+
import json
|
6 |
+
|
7 |
+
# Load the model and tokenizer
|
8 |
+
model_id = "selvaonline/shopping-assistant"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
10 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
11 |
+
|
12 |
+
# Load the categories
|
13 |
+
try:
|
14 |
+
from huggingface_hub import hf_hub_download
|
15 |
+
categories_path = hf_hub_download(repo_id=model_id, filename="categories.json")
|
16 |
+
with open(categories_path, "r") as f:
|
17 |
+
categories = json.load(f)
|
18 |
+
except Exception as e:
|
19 |
+
print(f"Error loading categories: {str(e)}")
|
20 |
+
categories = ["electronics", "clothing", "home", "kitchen", "toys", "other"]
|
21 |
+
|
22 |
+
def classify_text(text):
|
23 |
+
"""
|
24 |
+
Classify the text using the model
|
25 |
+
"""
|
26 |
+
# Prepare the input
|
27 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
28 |
+
|
29 |
+
# Get the model prediction
|
30 |
+
with torch.no_grad():
|
31 |
+
outputs = model(**inputs)
|
32 |
+
predictions = torch.sigmoid(outputs.logits)
|
33 |
+
|
34 |
+
# Get the top categories
|
35 |
+
top_categories = []
|
36 |
+
for i, score in enumerate(predictions[0]):
|
37 |
+
if score > 0.5: # Threshold for multi-label classification
|
38 |
+
top_categories.append((categories[i], score.item()))
|
39 |
+
|
40 |
+
# Sort by score
|
41 |
+
top_categories.sort(key=lambda x: x[1], reverse=True)
|
42 |
+
|
43 |
+
# Format the results
|
44 |
+
if top_categories:
|
45 |
+
result = f"Top categories for '{text}':\n\n"
|
46 |
+
for category, score in top_categories:
|
47 |
+
result += f"- {category}: {score:.4f}\n"
|
48 |
+
|
49 |
+
result += f"\nBased on your query, I would recommend looking for deals in the **{top_categories[0][0]}** category."
|
50 |
+
else:
|
51 |
+
result = f"No categories found for '{text}'. Please try a different query."
|
52 |
+
|
53 |
+
return result
|
54 |
+
|
55 |
+
# Create the Gradio interface
|
56 |
+
demo = gr.Interface(
|
57 |
+
fn=classify_text,
|
58 |
+
inputs=gr.Textbox(
|
59 |
+
lines=2,
|
60 |
+
placeholder="Enter your shopping query here...",
|
61 |
+
label="Shopping Query"
|
62 |
+
),
|
63 |
+
outputs=gr.Markdown(label="Results"),
|
64 |
+
title="Shopping Assistant",
|
65 |
+
description="""
|
66 |
+
This demo shows how to use the Shopping Assistant model to classify shopping queries into categories.
|
67 |
+
Enter a shopping query below to see which categories it belongs to.
|
68 |
+
|
69 |
+
Examples:
|
70 |
+
- "I'm looking for headphones"
|
71 |
+
- "Do you have any kitchen appliance deals?"
|
72 |
+
- "Show me the best laptop deals"
|
73 |
+
- "I need a new smart TV"
|
74 |
+
""",
|
75 |
+
examples=[
|
76 |
+
["I'm looking for headphones"],
|
77 |
+
["Do you have any kitchen appliance deals?"],
|
78 |
+
["Show me the best laptop deals"],
|
79 |
+
["I need a new smart TV"]
|
80 |
+
],
|
81 |
+
theme=gr.themes.Soft()
|
82 |
+
)
|
83 |
+
|
84 |
+
# Launch the app
|
85 |
+
if __name__ == "__main__":
|
86 |
+
demo.launch()
|