File size: 11,656 Bytes
01a3727 6e2368e 01a3727 e667020 01a3727 e667020 01a3727 e667020 01a3727 6e2368e 01a3727 6e2368e 01a3727 6e2368e 01a3727 e667020 01a3727 6e2368e 01a3727 6e2368e 01a3727 6e2368e 6f89f62 6e2368e 6f89f62 e360e01 6f89f62 6e2368e 6f89f62 e360e01 6f89f62 e360e01 6f89f62 08f5082 6f89f62 6e2368e 01a3727 6e2368e 01a3727 6e2368e 01a3727 6e2368e 01a3727 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import json
import os
import requests
import re
# Function to extract text from HTML (from shopping_assistant.py)
def extract_text_from_html(html):
"""
Extract text from HTML without using BeautifulSoup
"""
# Remove HTML tags
text = re.sub(r'<[^>]+>', ' ', html)
# Remove extra whitespace
text = re.sub(r'\s+', ' ', text)
# Decode HTML entities
text = text.replace(' ', ' ').replace('&', '&').replace('<', '<').replace('>', '>')
return text.strip()
# Function to fetch deals from DealsFinders.com (from shopping_assistant.py)
def fetch_deals_data(url="https://www.dealsfinders.com/wp-json/wp/v2/posts", num_pages=2, per_page=100):
"""
Fetch deals data exclusively from the DealsFinders API
"""
all_deals = []
# Fetch from the DealsFinders API
for page in range(1, num_pages + 1):
try:
# Add a user agent to avoid being blocked
headers = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36'
}
response = requests.get(f"{url}?page={page}&per_page={per_page}", headers=headers)
if response.status_code == 200:
deals = response.json()
all_deals.extend(deals)
print(f"Fetched page {page} with {len(deals)} deals from DealsFinders API")
# If we get fewer deals than requested, we've reached the end
if len(deals) < per_page:
print(f"Reached the end of available deals at page {page}")
break
else:
print(f"Failed to fetch page {page} from DealsFinders API: {response.status_code}")
break
except Exception as e:
print(f"Error fetching page {page} from DealsFinders API: {str(e)}")
break
return all_deals
# Function to process deals data (from shopping_assistant.py)
def process_deals_data(deals_data):
"""
Process the deals data into a structured format
"""
processed_deals = []
for deal in deals_data:
try:
# Extract relevant information using our HTML text extractor
content_html = deal.get('content', {}).get('rendered', '')
excerpt_html = deal.get('excerpt', {}).get('rendered', '')
clean_content = extract_text_from_html(content_html)
clean_excerpt = extract_text_from_html(excerpt_html)
processed_deal = {
'id': deal.get('id'),
'title': deal.get('title', {}).get('rendered', ''),
'link': deal.get('link', ''),
'date': deal.get('date', ''),
'content': clean_content,
'excerpt': clean_excerpt
}
processed_deals.append(processed_deal)
except Exception as e:
print(f"Error processing deal: {str(e)}")
return processed_deals
# Load the e-commerce specific model and tokenizer
try:
# Try to load the e-commerce BERT model
tokenizer = AutoTokenizer.from_pretrained("prithivida/ecommerce-bert-base-uncased")
model = AutoModelForSequenceClassification.from_pretrained("prithivida/ecommerce-bert-base-uncased")
# E-commerce BERT categories
categories = [
"electronics", "computers", "mobile_phones", "accessories",
"clothing", "footwear", "watches", "jewelry",
"home", "kitchen", "furniture", "decor",
"beauty", "personal_care", "health", "wellness",
"toys", "games", "sports", "outdoors",
"books", "stationery", "music", "movies"
]
print("Using e-commerce BERT model")
except Exception as e:
# Fall back to local model if e-commerce BERT fails to load
print(f"Error loading e-commerce BERT model: {str(e)}")
print("Falling back to local model")
model_id = "selvaonline/shopping-assistant"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(model_id)
# Load the local categories
try:
from huggingface_hub import hf_hub_download
categories_path = hf_hub_download(repo_id=model_id, filename="categories.json")
with open(categories_path, "r") as f:
categories = json.load(f)
except Exception as e:
print(f"Error loading categories: {str(e)}")
categories = ["electronics", "clothing", "home", "kitchen", "toys", "other"]
# Global variable to store deals data
deals_cache = None
def classify_text(text, fetch_deals=True):
"""
Classify the text using the model and fetch relevant deals
"""
global deals_cache
# Prepare the input for classification
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
# Get the model prediction
with torch.no_grad():
outputs = model(**inputs)
# Handle different model output formats
if hasattr(outputs, 'logits'):
# For models that return logits
if outputs.logits.shape[1] == len(categories):
# Multi-label classification
predictions = torch.sigmoid(outputs.logits)
# Get the top categories
top_categories = []
for i, score in enumerate(predictions[0]):
if score > 0.3: # Lower threshold for e-commerce model
top_categories.append((categories[i], score.item()))
else:
# Single-label classification
probabilities = torch.softmax(outputs.logits, dim=1)
values, indices = torch.topk(probabilities, 3)
top_categories = []
for i, idx in enumerate(indices[0]):
if idx < len(categories):
top_categories.append((categories[idx.item()], values[0][i].item()))
else:
# Fallback for other model formats
predictions = torch.sigmoid(outputs[0])
# Get the top categories
top_categories = []
for i, score in enumerate(predictions[0]):
if score > 0.5:
top_categories.append((categories[i], score.item()))
# Sort by score
top_categories.sort(key=lambda x: x[1], reverse=True)
# Format the classification results
if top_categories:
result = f"Top categories for '{text}':\n\n"
for category, score in top_categories:
result += f"- {category}: {score:.4f}\n"
result += f"\nBased on your query, I would recommend looking for deals in the **{top_categories[0][0]}** category.\n\n"
else:
result = f"No categories found for '{text}'. Please try a different query.\n\n"
# Fetch and display deals if requested
if fetch_deals:
result += "## Relevant Deals from DealsFinders.com\n\n"
try:
# Fetch deals data if not already cached
if deals_cache is None:
deals_data = fetch_deals_data(num_pages=2) # Limit to 2 pages for faster response
deals_cache = process_deals_data(deals_data)
# Extract query terms and expand with related terms
query_terms = text.lower().split()
expanded_terms = list(query_terms)
# Add related terms based on the query
if any(term in text.lower() for term in ['headphone', 'headphones']):
expanded_terms.extend(['earbuds', 'earphones', 'earpods', 'airpods', 'audio', 'bluetooth', 'wireless'])
elif any(term in text.lower() for term in ['laptop', 'computer']):
expanded_terms.extend(['notebook', 'macbook', 'chromebook', 'pc'])
elif any(term in text.lower() for term in ['tv', 'television']):
expanded_terms.extend(['smart tv', 'roku', 'streaming'])
elif any(term in text.lower() for term in ['kitchen', 'appliance']):
expanded_terms.extend(['mixer', 'blender', 'toaster', 'microwave', 'oven'])
# Score deals based on relevance to the query
scored_deals = []
for deal in deals_cache:
title = deal['title'].lower()
content = deal['content'].lower()
excerpt = deal['excerpt'].lower()
score = 0
# Check original query terms (higher weight)
for term in query_terms:
if term in title:
score += 10
if term in content:
score += 3
if term in excerpt:
score += 3
# Check expanded terms (lower weight)
for term in expanded_terms:
if term not in query_terms: # Skip original terms
if term in title:
score += 5
if term in content:
score += 1
if term in excerpt:
score += 1
# Add to scored deals if it has any relevance
if score > 0:
scored_deals.append((deal, score))
# Sort by score (descending)
scored_deals.sort(key=lambda x: x[1], reverse=True)
# Extract the deals from the scored list
relevant_deals = [deal for deal, _ in scored_deals[:5]]
if relevant_deals:
for i, deal in enumerate(relevant_deals, 1):
result += f"{i}. [{deal['title']}]({deal['link']})\n\n"
else:
result += "No specific deals found for your query. Try a different search term or browse the recommended category.\n\n"
except Exception as e:
result += f"Error fetching deals: {str(e)}\n\n"
return result
# Create the Gradio interface
demo = gr.Interface(
fn=classify_text,
inputs=[
gr.Textbox(
lines=2,
placeholder="Enter your shopping query here...",
label="Shopping Query"
),
gr.Checkbox(
label="Fetch Deals",
value=True,
info="Check to fetch and display deals from DealsFinders.com"
)
],
outputs=gr.Markdown(label="Results"),
title="Shopping Assistant",
description="""
This demo shows how to use the Shopping Assistant model to classify shopping queries into categories and find relevant deals.
Enter a shopping query below to see which categories it belongs to and find deals from DealsFinders.com.
Examples:
- "I'm looking for headphones"
- "Do you have any kitchen appliance deals?"
- "Show me the best laptop deals"
- "I need a new smart TV"
""",
examples=[
["I'm looking for headphones", True],
["Do you have any kitchen appliance deals?", True],
["Show me the best laptop deals", True],
["I need a new smart TV", True],
["headphone deals", True]
],
theme=gr.themes.Soft()
)
# Launch the app
if __name__ == "__main__":
demo.launch()
|