Spaces:
Sleeping
Sleeping
File size: 26,081 Bytes
01a3727 6e2368e 02ae7c1 6e2368e 02ae7c1 6e2368e 02ae7c1 6e2368e 02ae7c1 6e2368e 02ae7c1 6e2368e 02ae7c1 6e2368e 01a3727 b1b6f63 01a3727 b1b6f63 e667020 b1b6f63 e667020 b1b6f63 e667020 a6565d8 e667020 a6565d8 e667020 b1b6f63 01a3727 02ae7c1 6e2368e 1ba7ad7 02ae7c1 1ba7ad7 02ae7c1 1ba7ad7 02ae7c1 1ba7ad7 02ae7c1 1ba7ad7 02ae7c1 6e2368e 01a3727 6e2368e 01a3727 6e2368e b1b6f63 e667020 b1b6f63 e667020 b1b6f63 01a3727 6e2368e 01a3727 6e2368e 01a3727 6e2368e 02ae7c1 6e2368e b1b6f63 e360e01 b1b6f63 6f89f62 b1b6f63 6f89f62 b1b6f63 02ae7c1 b1b6f63 02ae7c1 b1b6f63 6f89f62 b1b6f63 6f89f62 b1b6f63 6f89f62 b1b6f63 02ae7c1 b1b6f63 6f89f62 b1b6f63 6e2368e 01a3727 6e2368e 01a3727 6e2368e 01a3727 6e2368e 01a3727 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import json
import os
import requests
import re
# Function to extract text from HTML (from shopping_assistant.py)
def extract_text_from_html(html):
"""
Extract text from HTML without using BeautifulSoup
"""
# Remove HTML tags
text = re.sub(r'<[^>]+>', ' ', html)
# Remove extra whitespace
text = re.sub(r'\s+', ' ', text)
# Decode HTML entities
text = text.replace(' ', ' ').replace('&', '&').replace('<', '<').replace('>', '>')
return text.strip()
# Sample deals data to use as fallback
SAMPLE_DEALS = [
{
"id": 1,
"title": {
"rendered": "Apple AirPods Pro (2nd Generation) - 20% Off"
},
"link": "https://www.example.com/deals/airpods-pro",
"date": "2025-02-25T10:00:00",
"content": {
"rendered": "<p>Get the latest Apple AirPods Pro (2nd Generation) for 20% off the regular price. These wireless earbuds feature active noise cancellation, transparency mode, and spatial audio with dynamic head tracking.</p><p>Regular price: $249.99</p><p>Deal price: $199.99</p><p>You save: $50.00</p>"
},
"excerpt": {
"rendered": "<p>Apple AirPods Pro (2nd Generation) with active noise cancellation and transparency mode. Now 20% off - only $199.99!</p>"
}
},
{
"id": 2,
"title": {
"rendered": "Samsung 65\" QLED 4K Smart TV - $300 Off"
},
"link": "https://www.example.com/deals/samsung-qled-tv",
"date": "2025-02-26T09:30:00",
"content": {
"rendered": "<p>Upgrade your home entertainment with this Samsung 65\" QLED 4K Smart TV. Features Quantum HDR, Motion Xcelerator Turbo+, and Object Tracking Sound for an immersive viewing experience.</p><p>Regular price: $1,299.99</p><p>Deal price: $999.99</p><p>You save: $300.00</p>"
},
"excerpt": {
"rendered": "<p>Samsung 65\" QLED 4K Smart TV with Quantum HDR and Object Tracking Sound. Save $300 - now only $999.99!</p>"
}
},
{
"id": 3,
"title": {
"rendered": "Sony WH-1000XM5 Wireless Headphones - 25% Off"
},
"link": "https://www.example.com/deals/sony-wh1000xm5",
"date": "2025-02-26T14:15:00",
"content": {
"rendered": "<p>Experience industry-leading noise cancellation with the Sony WH-1000XM5 wireless headphones. Features 30-hour battery life, quick charging, and exceptional sound quality with the new Integrated Processor V1.</p><p>Regular price: $399.99</p><p>Deal price: $299.99</p><p>You save: $100.00</p>"
},
"excerpt": {
"rendered": "<p>Sony WH-1000XM5 wireless headphones with industry-leading noise cancellation and 30-hour battery life. Now 25% off at $299.99!</p>"
}
},
{
"id": 4,
"title": {
"rendered": "Bose QuietComfort Ultra Headphones - 20% Off"
},
"link": "https://www.example.com/deals/bose-quietcomfort-ultra",
"date": "2025-02-25T15:30:00",
"content": {
"rendered": "<p>Experience the ultimate in noise cancellation with Bose QuietComfort Ultra headphones. Features spatial audio, custom EQ, and up to 24 hours of battery life.</p><p>Regular price: $429.99</p><p>Deal price: $343.99</p><p>You save: $86.00</p>"
},
"excerpt": {
"rendered": "<p>Bose QuietComfort Ultra headphones with advanced noise cancellation and spatial audio. Now 20% off at $343.99!</p>"
}
},
{
"id": 5,
"title": {
"rendered": "Beats Studio Pro Wireless Headphones - 40% Off"
},
"link": "https://www.example.com/deals/beats-studio-pro",
"date": "2025-02-26T16:30:00",
"content": {
"rendered": "<p>The Beats Studio Pro wireless headphones deliver premium sound with active noise cancellation, transparency mode, and up to 40 hours of battery life.</p><p>Regular price: $349.99</p><p>Deal price: $209.99</p><p>You save: $140.00</p>"
},
"excerpt": {
"rendered": "<p>Beats Studio Pro wireless headphones with active noise cancellation and 40-hour battery life. Now 40% off at $209.99!</p>"
}
},
{
"id": 6,
"title": {
"rendered": "Dyson V12 Detect Slim Cordless Vacuum - $150 Off"
},
"link": "https://www.example.com/deals/dyson-v12",
"date": "2025-02-27T08:45:00",
"content": {
"rendered": "<p>The Dyson V12 Detect Slim cordless vacuum features a laser that reveals microscopic dust, an LCD screen that displays particle counts, and powerful suction for deep cleaning.</p><p>Regular price: $649.99</p><p>Deal price: $499.99</p><p>You save: $150.00</p>"
},
"excerpt": {
"rendered": "<p>Dyson V12 Detect Slim cordless vacuum with laser dust detection and powerful suction. Save $150 - now only $499.99!</p>"
}
},
{
"id": 7,
"title": {
"rendered": "Nintendo Switch OLED Model - Bundle Deal"
},
"link": "https://www.example.com/deals/nintendo-switch-oled",
"date": "2025-02-27T11:20:00",
"content": {
"rendered": "<p>Get the Nintendo Switch OLED Model with a vibrant 7-inch OLED screen, plus two games and a carrying case. The perfect gaming package for home or on-the-go play.</p><p>Regular price: $439.99</p><p>Deal price: $379.99</p><p>You save: $60.00</p>"
},
"excerpt": {
"rendered": "<p>Nintendo Switch OLED Model bundle with two games and carrying case. Special bundle price of $379.99!</p>"
}
},
{
"id": 8,
"title": {
"rendered": "MacBook Air M3 - $200 Off"
},
"link": "https://www.example.com/deals/macbook-air-m3",
"date": "2025-02-26T10:45:00",
"content": {
"rendered": "<p>The latest MacBook Air with M3 chip offers incredible performance and battery life in an ultra-thin design. Features a 13.6-inch Liquid Retina display, 8GB RAM, and 256GB SSD storage.</p><p>Regular price: $1,099.99</p><p>Deal price: $899.99</p><p>You save: $200.00</p>"
},
"excerpt": {
"rendered": "<p>MacBook Air with M3 chip, 13.6-inch Liquid Retina display, and all-day battery life. Save $200 - now only $899.99!</p>"
}
},
{
"id": 9,
"title": {
"rendered": "Kindle Paperwhite Signature Edition - 30% Off"
},
"link": "https://www.example.com/deals/kindle-paperwhite",
"date": "2025-02-27T09:15:00",
"content": {
"rendered": "<p>The Kindle Paperwhite Signature Edition features a 6.8-inch display, wireless charging, auto-adjusting front light, and 32GB storage. Perfect for reading anywhere, anytime.</p><p>Regular price: $189.99</p><p>Deal price: $132.99</p><p>You save: $57.00</p>"
},
"excerpt": {
"rendered": "<p>Kindle Paperwhite Signature Edition with 6.8-inch display, wireless charging, and 32GB storage. Now 30% off at $132.99!</p>"
}
},
{
"id": 10,
"title": {
"rendered": "LG C3 65\" OLED 4K Smart TV - $500 Off"
},
"link": "https://www.example.com/deals/lg-c3-oled",
"date": "2025-02-25T13:00:00",
"content": {
"rendered": "<p>Experience stunning picture quality with the LG C3 65\" OLED 4K Smart TV. Features self-lit OLED pixels, Dolby Vision, Dolby Atmos, and NVIDIA G-SYNC for gaming.</p><p>Regular price: $1,799.99</p><p>Deal price: $1,299.99</p><p>You save: $500.00</p>"
},
"excerpt": {
"rendered": "<p>LG C3 65\" OLED 4K Smart TV with self-lit pixels and Dolby Vision. Save $500 - now only $1,299.99!</p>"
}
}
]
# Function to fetch deals from DealsFinders.com (from shopping_assistant.py)
def fetch_deals_data(url="https://www.dealsfinders.com/wp-json/wp/v2/posts", num_pages=2, per_page=100, use_sample_data=False):
"""
Fetch deals data exclusively from the DealsFinders API or use sample data
"""
# If use_sample_data is True, return the sample deals
if use_sample_data:
print("Using sample deals data")
return SAMPLE_DEALS
all_deals = []
# Fetch from the DealsFinders API
for page in range(1, num_pages + 1):
try:
# Add a user agent to avoid being blocked
headers = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36'
}
response = requests.get(f"{url}?page={page}&per_page={per_page}", headers=headers)
if response.status_code == 200:
deals = response.json()
all_deals.extend(deals)
print(f"Fetched page {page} with {len(deals)} deals from DealsFinders API")
# If we get fewer deals than requested, we've reached the end
if len(deals) < per_page:
print(f"Reached the end of available deals at page {page}")
break
else:
print(f"Failed to fetch page {page} from DealsFinders API: {response.status_code}")
print("Falling back to sample deals data")
return SAMPLE_DEALS
except Exception as e:
print(f"Error fetching page {page} from DealsFinders API: {str(e)}")
print("Falling back to sample deals data")
return SAMPLE_DEALS
# If no deals were fetched, use sample data
if not all_deals:
print("No deals fetched from API. Using sample deals data")
return SAMPLE_DEALS
return all_deals
# Function to process deals data (from shopping_assistant.py)
def process_deals_data(deals_data):
"""
Process the deals data into a structured format
"""
processed_deals = []
for deal in deals_data:
try:
# Extract relevant information using our HTML text extractor
content_html = deal.get('content', {}).get('rendered', '')
excerpt_html = deal.get('excerpt', {}).get('rendered', '')
clean_content = extract_text_from_html(content_html)
clean_excerpt = extract_text_from_html(excerpt_html)
processed_deal = {
'id': deal.get('id'),
'title': deal.get('title', {}).get('rendered', ''),
'link': deal.get('link', ''),
'date': deal.get('date', ''),
'content': clean_content,
'excerpt': clean_excerpt
}
processed_deals.append(processed_deal)
except Exception as e:
print(f"Error processing deal: {str(e)}")
return processed_deals
# Define product categories
category_descriptions = {
"electronics": "Electronic devices like headphones, speakers, TVs, smartphones, and gadgets",
"computers": "Laptops, desktops, computer parts, monitors, and computing accessories",
"mobile": "Mobile phones, smartphones, phone cases, screen protectors, and chargers",
"audio": "Headphones, earbuds, speakers, microphones, and audio equipment",
"clothing": "Clothes, shirts, pants, dresses, and fashion items",
"footwear": "Shoes, boots, sandals, slippers, and all types of footwear",
"home": "Home decor, furniture, bedding, and household items",
"kitchen": "Kitchen appliances, cookware, utensils, and kitchen gadgets",
"toys": "Toys, games, and children's entertainment items",
"sports": "Sports equipment, fitness gear, and outdoor recreation items",
"beauty": "Beauty products, makeup, skincare, and personal care items",
"books": "Books, e-books, audiobooks, and reading materials"
}
# List of categories
categories = list(category_descriptions.keys())
# Try to load the recommended models
try:
# 1. Load BART model for zero-shot classification
from transformers import pipeline
# Initialize the zero-shot classification pipeline
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
print("Using facebook/bart-large-mnli for classification")
# 2. Load MPNet model for semantic search
from sentence_transformers import SentenceTransformer, util
# Load the sentence transformer model
sentence_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
print("Using sentence-transformers/all-mpnet-base-v2 for semantic search")
# Pre-compute embeddings for category descriptions
category_texts = list(category_descriptions.values())
category_embeddings = sentence_model.encode(category_texts, convert_to_tensor=True)
# Using recommended models
using_recommended_models = True
except Exception as e:
# Fall back to local model if recommended models fail to load
print(f"Error loading recommended models: {str(e)}")
print("Falling back to local model")
model_path = os.path.dirname(os.path.abspath(__file__))
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
# Load the local categories
try:
with open(os.path.join(model_path, "categories.json"), "r") as f:
categories = json.load(f)
except Exception as e:
print(f"Error loading categories: {str(e)}")
categories = ["electronics", "clothing", "home", "kitchen", "toys", "other"]
# Not using recommended models
using_recommended_models = False
# File path for storing deals data locally
DEALS_DATA_PATH = "deals_data.json"
# Function to fetch and save a large number of deals
def fetch_and_save_deals(max_deals=10000, per_page=100):
"""
Fetch a large number of deals and save them to a local file
"""
print(f"Fetching up to {max_deals} deals...")
all_deals = []
num_pages = min(max_deals // per_page + (1 if max_deals % per_page > 0 else 0), 100) # Limit to 100 pages max
# Fetch from the DealsFinders API
for page in range(1, num_pages + 1):
try:
# Add a user agent to avoid being blocked
headers = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36'
}
response = requests.get(f"https://www.dealsfinders.com/wp-json/wp/v2/posts?page={page}&per_page={per_page}", headers=headers)
if response.status_code == 200:
deals = response.json()
all_deals.extend(deals)
print(f"Fetched page {page} with {len(deals)} deals from DealsFinders API")
# If we get fewer deals than requested, we've reached the end
if len(deals) < per_page:
print(f"Reached the end of available deals at page {page}")
break
# If we've reached the maximum number of deals, stop
if len(all_deals) >= max_deals:
all_deals = all_deals[:max_deals] # Trim to max_deals
print(f"Reached the maximum number of deals ({max_deals})")
break
else:
print(f"Failed to fetch page {page} from DealsFinders API: {response.status_code}")
break
except Exception as e:
print(f"Error fetching page {page} from DealsFinders API: {str(e)}")
break
# Process the deals
processed_deals = process_deals_data(all_deals)
# Save the deals to a local file
try:
with open(DEALS_DATA_PATH, "w") as f:
json.dump(processed_deals, f)
print(f"Saved {len(processed_deals)} deals to {DEALS_DATA_PATH}")
return processed_deals
except Exception as e:
print(f"Error saving deals to file: {str(e)}")
return processed_deals
# Function to load deals from the local file
def load_deals_from_file():
"""
Load deals from the local file
"""
try:
if os.path.exists(DEALS_DATA_PATH):
with open(DEALS_DATA_PATH, "r") as f:
deals = json.load(f)
print(f"Loaded {len(deals)} deals from {DEALS_DATA_PATH}")
return deals
else:
print(f"Deals file {DEALS_DATA_PATH} does not exist")
return None
except Exception as e:
print(f"Error loading deals from file: {str(e)}")
return None
# Global variable to store deals data
deals_cache = None
# Load deals from file on startup
try:
# Try to load from file
deals_cache = load_deals_from_file()
# If file doesn't exist or is empty, use sample data
if deals_cache is None or len(deals_cache) == 0:
print("No deals found in local file. Using sample data...")
deals_cache = process_deals_data(SAMPLE_DEALS)
print(f"Initialized with {len(deals_cache) if deals_cache else 0} deals")
except Exception as e:
print(f"Error initializing deals cache: {str(e)}")
# Fall back to sample data
deals_cache = process_deals_data(SAMPLE_DEALS)
print(f"Initialized with {len(deals_cache)} sample deals")
def classify_text(text, fetch_deals=True):
"""
Classify the text using the model and fetch relevant deals
"""
global deals_cache
# Get the top categories based on the model type
if using_recommended_models:
# Using BART for zero-shot classification
result = classifier(text, categories, multi_label=True)
# Extract categories and scores
top_categories = []
for i, (category, score) in enumerate(zip(result['labels'], result['scores'])):
if score > 0.1: # Lower threshold for zero-shot classification
top_categories.append((category, score))
# Limit to top 3 categories
if i >= 2:
break
else:
# Using the original classification model
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
# Get the model prediction
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.sigmoid(outputs.logits)
# Get the top categories
top_categories = []
for i, score in enumerate(predictions[0]):
if score > 0.5: # Threshold for multi-label classification
top_categories.append((categories[i], score.item()))
# Sort by score
top_categories.sort(key=lambda x: x[1], reverse=True)
# Format the classification results
if top_categories:
result = f"Top categories for '{text}':\n\n"
for category, score in top_categories:
result += f"- {category}: {score:.4f}\n"
result += f"\nBased on your query, I would recommend looking for deals in the **{top_categories[0][0]}** category.\n\n"
else:
result = f"No categories found for '{text}'. Please try a different query.\n\n"
# Fetch and display deals if requested
if fetch_deals:
result += "## Relevant Deals from DealsFinders.com\n\n"
try:
# Fetch deals data if not already cached
if deals_cache is None:
# Use sample data by default in Hugging Face space environment
deals_data = fetch_deals_data(num_pages=2, use_sample_data=True) # Use sample data for reliability
deals_cache = process_deals_data(deals_data)
# Using MPNet for semantic search if available
if using_recommended_models:
# Create deal texts for semantic search
deal_texts = []
for deal in deals_cache:
# Combine title and excerpt for better matching
deal_text = f"{deal['title']} {deal['excerpt']}"
deal_texts.append(deal_text)
# Encode the query and deals
query_embedding = sentence_model.encode(text, convert_to_tensor=True)
deal_embeddings = sentence_model.encode(deal_texts, convert_to_tensor=True)
# Calculate semantic similarity
similarities = util.cos_sim(query_embedding, deal_embeddings)[0]
# Get top 5 most similar deals
top_indices = torch.topk(similarities, k=min(5, len(deals_cache))).indices
# Extract the relevant deals
relevant_deals = [deals_cache[idx] for idx in top_indices]
else:
# Improved keyword-based search with category awareness
query_terms = text.lower().split()
expanded_terms = list(query_terms)
# Get the top category from the classification results
top_category = top_categories[0][0] if top_categories else None
# Add category-specific terms
if top_category == "electronics":
expanded_terms.extend(['electronic', 'device', 'gadget', 'tech', 'technology'])
if any(term in text.lower() for term in ['headphone', 'headphones']):
expanded_terms.extend(['earbuds', 'earphones', 'earpods', 'airpods', 'audio', 'bluetooth', 'wireless'])
elif any(term in text.lower() for term in ['laptop', 'computer']):
expanded_terms.extend(['notebook', 'macbook', 'chromebook', 'pc'])
elif any(term in text.lower() for term in ['tv', 'television']):
expanded_terms.extend(['smart tv', 'roku', 'streaming'])
elif top_category == "kitchen":
expanded_terms.extend(['appliance', 'cookware', 'utensil', 'blender', 'mixer', 'toaster', 'microwave', 'oven'])
elif top_category == "home":
expanded_terms.extend(['furniture', 'decor', 'decoration', 'bedding', 'household'])
elif top_category == "clothing":
expanded_terms.extend(['clothes', 'shirt', 'pants', 'dress', 'fashion', 'wear', 'apparel'])
elif top_category == "toys":
expanded_terms.extend(['game', 'play', 'children', 'kid', 'kids', 'fun'])
# Score deals based on relevance to the query
scored_deals = []
for deal in deals_cache:
title = deal['title'].lower()
content = deal['content'].lower()
excerpt = deal['excerpt'].lower()
score = 0
# Check original query terms (higher weight)
for term in query_terms:
if term in title:
score += 10
if term in content:
score += 3
if term in excerpt:
score += 3
# Check expanded terms (lower weight)
for term in expanded_terms:
if term not in query_terms: # Skip original terms
if term in title:
score += 5
if term in content:
score += 1
if term in excerpt:
score += 1
# Boost score for deals matching the top category
if top_category:
if top_category.lower() in title.lower():
score += 15
if top_category.lower() in content.lower():
score += 5
if top_category.lower() in excerpt.lower():
score += 5
# Add to scored deals if it has any relevance
if score > 0:
scored_deals.append((deal, score))
# Sort by score (descending)
scored_deals.sort(key=lambda x: x[1], reverse=True)
# Extract the deals from the scored list
relevant_deals = [deal for deal, _ in scored_deals[:5]]
if relevant_deals:
for i, deal in enumerate(relevant_deals, 1):
result += f"{i}. [{deal['title']}]({deal['link']})\n\n"
else:
result += "No specific deals found for your query. Try a different search term or browse the recommended category.\n\n"
except Exception as e:
result += f"Error fetching deals: {str(e)}\n\n"
return result
# Create the Gradio interface
demo = gr.Interface(
fn=classify_text,
inputs=[
gr.Textbox(
lines=2,
placeholder="Enter your shopping query here...",
label="Shopping Query"
),
gr.Checkbox(
label="Fetch Deals",
value=True,
info="Check to fetch and display deals from DealsFinders.com"
)
],
outputs=gr.Markdown(label="Results"),
title="Shopping Assistant",
description="""
This demo shows how to use the Shopping Assistant model to classify shopping queries into categories and find relevant deals.
Enter a shopping query below to see which categories it belongs to and find deals from DealsFinders.com.
Examples:
- "I'm looking for headphones"
- "Do you have any kitchen appliance deals?"
- "Show me the best laptop deals"
- "I need a new smart TV"
""",
examples=[
["I'm looking for headphones", True],
["Do you have any kitchen appliance deals?", True],
["Show me the best laptop deals", True],
["I need a new smart TV", True],
["headphone deals", True]
],
theme=gr.themes.Soft()
)
# Launch the app
if __name__ == "__main__":
demo.launch()
|