Spaces:
Running
Running
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import paddle | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
from paddleseg.cvlibs import manager | |
import cv2 | |
class MRSD(nn.Layer): | |
def __init__(self, eps=1e-6): | |
super().__init__() | |
self.eps = eps | |
def forward(self, logit, label, mask=None): | |
""" | |
Forward computation. | |
Args: | |
logit (Tensor): Logit tensor, the data type is float32, float64. | |
label (Tensor): Label tensor, the data type is float32, float64. The shape should equal to logit. | |
mask (Tensor, optional): The mask where the loss valid. Default: None. | |
""" | |
if len(label.shape) == 3: | |
label = label.unsqueeze(1) | |
sd = paddle.square(logit - label) | |
loss = paddle.sqrt(sd + self.eps) | |
if mask is not None: | |
mask = mask.astype('float32') | |
if len(mask.shape) == 3: | |
mask = mask.unsqueeze(1) | |
loss = loss * mask | |
loss = loss.sum() / (mask.sum() + self.eps) | |
mask.stop_gradient = True | |
else: | |
loss = loss.mean() | |
return loss | |
class GradientLoss(nn.Layer): | |
def __init__(self, eps=1e-6): | |
super().__init__() | |
self.kernel_x, self.kernel_y = self.sobel_kernel() | |
self.eps = eps | |
def forward(self, logit, label, mask=None): | |
if len(label.shape) == 3: | |
label = label.unsqueeze(1) | |
if mask is not None: | |
if len(mask.shape) == 3: | |
mask = mask.unsqueeze(1) | |
logit = logit * mask | |
label = label * mask | |
loss = paddle.sum( | |
F.l1_loss(self.sobel(logit), self.sobel(label), 'none')) / ( | |
mask.sum() + self.eps) | |
else: | |
loss = F.l1_loss(self.sobel(logit), self.sobel(label), 'mean') | |
return loss | |
def sobel(self, input): | |
"""Using Sobel to compute gradient. Return the magnitude.""" | |
if not len(input.shape) == 4: | |
raise ValueError("Invalid input shape, we expect NCHW, but it is ", | |
input.shape) | |
n, c, h, w = input.shape | |
input_pad = paddle.reshape(input, (n * c, 1, h, w)) | |
input_pad = F.pad(input_pad, pad=[1, 1, 1, 1], mode='replicate') | |
grad_x = F.conv2d(input_pad, self.kernel_x, padding=0) | |
grad_y = F.conv2d(input_pad, self.kernel_y, padding=0) | |
mag = paddle.sqrt(grad_x * grad_x + grad_y * grad_y + self.eps) | |
mag = paddle.reshape(mag, (n, c, h, w)) | |
return mag | |
def sobel_kernel(self): | |
kernel_x = paddle.to_tensor([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], | |
[-1.0, 0.0, 1.0]]).astype('float32') | |
kernel_x = kernel_x / kernel_x.abs().sum() | |
kernel_y = kernel_x.transpose([1, 0]) | |
kernel_x = kernel_x.unsqueeze(0).unsqueeze(0) | |
kernel_y = kernel_y.unsqueeze(0).unsqueeze(0) | |
kernel_x.stop_gradient = True | |
kernel_y.stop_gradient = True | |
return kernel_x, kernel_y | |
class LaplacianLoss(nn.Layer): | |
""" | |
Laplacian loss is refer to | |
https://github.com/JizhiziLi/AIM/blob/master/core/evaluate.py#L83 | |
""" | |
def __init__(self): | |
super().__init__() | |
self.gauss_kernel = self.build_gauss_kernel( | |
size=5, sigma=1.0, n_channels=1) | |
def forward(self, logit, label, mask=None): | |
if len(label.shape) == 3: | |
label = label.unsqueeze(1) | |
if mask is not None: | |
if len(mask.shape) == 3: | |
mask = mask.unsqueeze(1) | |
logit = logit * mask | |
label = label * mask | |
pyr_label = self.laplacian_pyramid(label, self.gauss_kernel, 5) | |
pyr_logit = self.laplacian_pyramid(logit, self.gauss_kernel, 5) | |
loss = sum(F.l1_loss(a, b) for a, b in zip(pyr_label, pyr_logit)) | |
return loss | |
def build_gauss_kernel(self, size=5, sigma=1.0, n_channels=1): | |
if size % 2 != 1: | |
raise ValueError("kernel size must be uneven") | |
grid = np.float32(np.mgrid[0:size, 0:size].T) | |
gaussian = lambda x: np.exp((x - size // 2)**2 / (-2 * sigma**2))**2 | |
kernel = np.sum(gaussian(grid), axis=2) | |
kernel /= np.sum(kernel) | |
kernel = np.tile(kernel, (n_channels, 1, 1)) | |
kernel = paddle.to_tensor(kernel[:, None, :, :]) | |
kernel.stop_gradient = True | |
return kernel | |
def conv_gauss(self, input, kernel): | |
n_channels, _, kh, kw = kernel.shape | |
x = F.pad(input, (kh // 2, kw // 2, kh // 2, kh // 2), mode='replicate') | |
x = F.conv2d(x, kernel, groups=n_channels) | |
return x | |
def laplacian_pyramid(self, input, kernel, max_levels=5): | |
current = input | |
pyr = [] | |
for level in range(max_levels): | |
filtered = self.conv_gauss(current, kernel) | |
diff = current - filtered | |
pyr.append(diff) | |
current = F.avg_pool2d(filtered, 2) | |
pyr.append(current) | |
return pyr | |