File size: 5,695 Bytes
4a582ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from paddleseg.cvlibs import manager
import cv2


@manager.LOSSES.add_component
class MRSD(nn.Layer):
    def __init__(self, eps=1e-6):
        super().__init__()
        self.eps = eps

    def forward(self, logit, label, mask=None):
        """
        Forward computation.

        Args:
            logit (Tensor): Logit tensor, the data type is float32, float64.
            label (Tensor): Label tensor, the data type is float32, float64. The shape should equal to logit.
            mask (Tensor, optional): The mask where the loss valid. Default: None.
        """
        if len(label.shape) == 3:
            label = label.unsqueeze(1)
        sd = paddle.square(logit - label)
        loss = paddle.sqrt(sd + self.eps)
        if mask is not None:
            mask = mask.astype('float32')
            if len(mask.shape) == 3:
                mask = mask.unsqueeze(1)
            loss = loss * mask
            loss = loss.sum() / (mask.sum() + self.eps)
            mask.stop_gradient = True
        else:
            loss = loss.mean()

        return loss


@manager.LOSSES.add_component
class GradientLoss(nn.Layer):
    def __init__(self, eps=1e-6):
        super().__init__()
        self.kernel_x, self.kernel_y = self.sobel_kernel()
        self.eps = eps

    def forward(self, logit, label, mask=None):
        if len(label.shape) == 3:
            label = label.unsqueeze(1)
        if mask is not None:
            if len(mask.shape) == 3:
                mask = mask.unsqueeze(1)
            logit = logit * mask
            label = label * mask
            loss = paddle.sum(
                F.l1_loss(self.sobel(logit), self.sobel(label), 'none')) / (
                    mask.sum() + self.eps)
        else:
            loss = F.l1_loss(self.sobel(logit), self.sobel(label), 'mean')

        return loss

    def sobel(self, input):
        """Using Sobel to compute gradient. Return the magnitude."""
        if not len(input.shape) == 4:
            raise ValueError("Invalid input shape, we expect NCHW, but it is ",
                             input.shape)

        n, c, h, w = input.shape

        input_pad = paddle.reshape(input, (n * c, 1, h, w))
        input_pad = F.pad(input_pad, pad=[1, 1, 1, 1], mode='replicate')

        grad_x = F.conv2d(input_pad, self.kernel_x, padding=0)
        grad_y = F.conv2d(input_pad, self.kernel_y, padding=0)

        mag = paddle.sqrt(grad_x * grad_x + grad_y * grad_y + self.eps)
        mag = paddle.reshape(mag, (n, c, h, w))

        return mag

    def sobel_kernel(self):
        kernel_x = paddle.to_tensor([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0],
                                     [-1.0, 0.0, 1.0]]).astype('float32')
        kernel_x = kernel_x / kernel_x.abs().sum()
        kernel_y = kernel_x.transpose([1, 0])
        kernel_x = kernel_x.unsqueeze(0).unsqueeze(0)
        kernel_y = kernel_y.unsqueeze(0).unsqueeze(0)
        kernel_x.stop_gradient = True
        kernel_y.stop_gradient = True
        return kernel_x, kernel_y


@manager.LOSSES.add_component
class LaplacianLoss(nn.Layer):
    """
    Laplacian loss is refer to
    https://github.com/JizhiziLi/AIM/blob/master/core/evaluate.py#L83
    """

    def __init__(self):
        super().__init__()
        self.gauss_kernel = self.build_gauss_kernel(
            size=5, sigma=1.0, n_channels=1)

    def forward(self, logit, label, mask=None):
        if len(label.shape) == 3:
            label = label.unsqueeze(1)
        if mask is not None:
            if len(mask.shape) == 3:
                mask = mask.unsqueeze(1)
            logit = logit * mask
            label = label * mask
        pyr_label = self.laplacian_pyramid(label, self.gauss_kernel, 5)
        pyr_logit = self.laplacian_pyramid(logit, self.gauss_kernel, 5)
        loss = sum(F.l1_loss(a, b) for a, b in zip(pyr_label, pyr_logit))

        return loss

    def build_gauss_kernel(self, size=5, sigma=1.0, n_channels=1):
        if size % 2 != 1:
            raise ValueError("kernel size must be uneven")
        grid = np.float32(np.mgrid[0:size, 0:size].T)
        gaussian = lambda x: np.exp((x - size // 2)**2 / (-2 * sigma**2))**2
        kernel = np.sum(gaussian(grid), axis=2)
        kernel /= np.sum(kernel)
        kernel = np.tile(kernel, (n_channels, 1, 1))
        kernel = paddle.to_tensor(kernel[:, None, :, :])
        kernel.stop_gradient = True
        return kernel

    def conv_gauss(self, input, kernel):
        n_channels, _, kh, kw = kernel.shape
        x = F.pad(input, (kh // 2, kw // 2, kh // 2, kh // 2), mode='replicate')
        x = F.conv2d(x, kernel, groups=n_channels)

        return x

    def laplacian_pyramid(self, input, kernel, max_levels=5):
        current = input
        pyr = []
        for level in range(max_levels):
            filtered = self.conv_gauss(current, kernel)
            diff = current - filtered
            pyr.append(diff)
            current = F.avg_pool2d(filtered, 2)
        pyr.append(current)
        return pyr