Spaces:
Sleeping
Sleeping
File size: 6,525 Bytes
15d6d88 4afdd4d 01a0b3d 4afdd4d 28fb111 4afdd4d 28fb111 4afdd4d 28fb111 4afdd4d 28fb111 be0fea4 01a0b3d be0fea4 01a0b3d 4afdd4d 01a0b3d 28fb111 4afdd4d 28fb111 4afdd4d 01a0b3d 915ecc0 4afdd4d 915ecc0 4afdd4d 28fb111 4afdd4d 01a0b3d b5d93b2 915ecc0 b5d93b2 01a0b3d b5d93b2 01a0b3d b5d93b2 4afdd4d 01a0b3d b5d93b2 7f31be9 b5d93b2 4afdd4d eec49a2 090b2f9 eec49a2 4afdd4d 28fb111 4afdd4d 28fb111 4afdd4d 01a0b3d 4afdd4d 87bc4ad 4de476c 4afdd4d d9114d9 4afdd4d 01a0b3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import spaces
import gradio as gr
import os
import sys
import random
import time
from omegaconf import OmegaConf
import torch
import torchvision
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
from einops import repeat
import torchvision.transforms as transforms
from utils.utils import instantiate_from_config
sys.path.insert(0, "scripts/evaluation")
from funcs import (
batch_ddim_sampling,
load_model_checkpoint,
get_latent_z,
save_videos
)
from transformers import pipeline
def download_model():
REPO_ID = 'Doubiiu/DynamiCrafter_1024'
filename_list = ['model.ckpt']
if not os.path.exists('./checkpoints/dynamicrafter_1024_v1/'):
os.makedirs('./checkpoints/dynamicrafter_1024_v1/')
for filename in filename_list:
local_file = os.path.join('./checkpoints/dynamicrafter_1024_v1/', filename)
if not os.path.exists(local_file):
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_1024_v1/', force_download=True)
download_model()
ckpt_path='checkpoints/dynamicrafter_1024_v1/model.ckpt'
config_file='configs/inference_1024_v1.0.yaml'
config = OmegaConf.load(config_file)
model_config = config.pop("model", OmegaConf.create())
model_config['params']['unet_config']['params']['use_checkpoint']=True
model = instantiate_from_config(model_config)
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
model = load_model_checkpoint(model, ckpt_path)
model.eval()
model = model.cuda()
# 번역 모델 로드
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
@spaces.GPU(duration=300, gpu_type="h100")
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
# 한글 입력 확인 및 번역
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
translated = translator(prompt, max_length=512)
prompt = translated[0]['translation_text']
resolution = (576, 1024)
save_fps = 8
seed_everything(seed)
transform = transforms.Compose([
transforms.Resize(min(resolution)),
transforms.CenterCrop(resolution),
])
torch.cuda.empty_cache()
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
start = time.time()
if steps > 60:
steps = 60
batch_size = 1
channels = model.model.diffusion_model.out_channels
frames = model.temporal_length
h, w = resolution[0] // 8, resolution[1] // 8
noise_shape = [batch_size, channels, frames, h, w]
with torch.no_grad(), torch.cuda.amp.autocast():
text_emb = model.get_learned_conditioning([prompt])
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
img_tensor = (img_tensor / 255. - 0.5) * 2
image_tensor_resized = transform(img_tensor)
videos = image_tensor_resized.unsqueeze(0)
z = get_latent_z(model, videos.unsqueeze(2))
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
cond_images = model.embedder(img_tensor.unsqueeze(0))
img_emb = model.image_proj_model(cond_images)
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
video_path = './output.mp4'
save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
return video_path
i2v_examples = [
['prompts/1024/astronaut04.png', 'a man in an astronaut suit playing a guitar', 30, 7.5, 1.0, 6, 123],
['prompts/1024/bloom01.png', 'time-lapse of a blooming flower with leaves and a stem', 30, 7.5, 1.0, 10, 123],
['prompts/1024/girl07.png', 'a beautiful woman with long hair and a dress blowing in the wind', 30, 7.5, 1.0, 10, 123],
['prompts/1024/pour_bear.png', 'pouring beer into a glass of ice and beer', 30, 7.5, 1.0, 10, 123],
['prompts/1024/robot01.png', 'a robot is walking through a destroyed city', 30, 7.5, 1.0, 10, 123],
['prompts/1024/firework03.png', 'fireworks display', 30, 7.5, 1.0, 10, 123],
]
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}"""
with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
with gr.Tab(label='ImageAnimation_576x1024'):
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
with gr.Row():
i2v_input_text = gr.Text(label='Prompts (한글 입력 가능)')
with gr.Row():
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale")
with gr.Row():
i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
i2v_motion = gr.Slider(minimum=5, maximum=20, step=1, elem_id="i2v_motion", label="FPS", value=10)
i2v_end_btn = gr.Button("Generate")
with gr.Row():
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
gr.Examples(examples=i2v_examples,
inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed],
outputs=[i2v_output_video],
fn = infer,
cache_examples=True,
)
i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed],
outputs=[i2v_output_video],
fn = infer
)
dynamicrafter_iface.launch(server_port=7890, server_name="0.0.0.0", share=True) |