Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,6 +19,7 @@ from funcs import (
|
|
19 |
get_latent_z,
|
20 |
save_videos
|
21 |
)
|
|
|
22 |
|
23 |
def download_model():
|
24 |
REPO_ID = 'Doubiiu/DynamiCrafter_1024'
|
@@ -35,15 +36,23 @@ ckpt_path='checkpoints/dynamicrafter_1024_v1/model.ckpt'
|
|
35 |
config_file='configs/inference_1024_v1.0.yaml'
|
36 |
config = OmegaConf.load(config_file)
|
37 |
model_config = config.pop("model", OmegaConf.create())
|
38 |
-
model_config['params']['unet_config']['params']['use_checkpoint']=True
|
39 |
model = instantiate_from_config(model_config)
|
40 |
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
|
41 |
model = load_model_checkpoint(model, ckpt_path)
|
42 |
model.eval()
|
43 |
model = model.cuda()
|
44 |
|
45 |
-
|
|
|
|
|
|
|
46 |
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
|
|
|
|
|
|
|
|
|
|
|
47 |
resolution = (576, 1024)
|
48 |
save_fps = 8
|
49 |
seed_everything(seed)
|
@@ -51,7 +60,7 @@ def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
|
|
51 |
transforms.Resize(min(resolution)),
|
52 |
transforms.CenterCrop(resolution),
|
53 |
])
|
54 |
-
torch.cuda.empty_cache()
|
55 |
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
|
56 |
start = time.time()
|
57 |
if steps > 60:
|
@@ -63,20 +72,18 @@ def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
|
|
63 |
h, w = resolution[0] // 8, resolution[1] // 8
|
64 |
noise_shape = [batch_size, channels, frames, h, w]
|
65 |
|
66 |
-
|
67 |
-
with torch.no_grad(), torch.cuda.amp.autocast(): # ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ๊ฐ์ ๋ฐ ์ฐ์ฐ ์๋ ๊ฐ์
|
68 |
text_emb = model.get_learned_conditioning([prompt])
|
69 |
|
70 |
-
# ์ด๋ฏธ์ง ์กฐ๊ฑด ์์ฑ
|
71 |
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
|
72 |
img_tensor = (img_tensor / 255. - 0.5) * 2
|
73 |
-
image_tensor_resized = transform(img_tensor)
|
74 |
-
videos = image_tensor_resized.unsqueeze(0)
|
75 |
|
76 |
-
z = get_latent_z(model, videos.unsqueeze(2))
|
77 |
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
|
78 |
|
79 |
-
cond_images = model.embedder(img_tensor.unsqueeze(0))
|
80 |
img_emb = model.image_proj_model(cond_images)
|
81 |
|
82 |
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
|
@@ -84,15 +91,12 @@ def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
|
|
84 |
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
|
85 |
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
|
86 |
|
87 |
-
# ์ถ๋ก
|
88 |
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
|
89 |
-
# b,samples,c,t,h,w
|
90 |
|
91 |
video_path = './output.mp4'
|
92 |
save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
|
93 |
return video_path
|
94 |
|
95 |
-
|
96 |
i2v_examples = [
|
97 |
['prompts/1024/astronaut04.png', 'a man in an astronaut suit playing a guitar', 30, 7.5, 1.0, 6, 123],
|
98 |
['prompts/1024/bloom01.png', 'time-lapse of a blooming flower with leaves and a stem', 30, 7.5, 1.0, 10, 123],
|
@@ -102,9 +106,6 @@ i2v_examples = [
|
|
102 |
['prompts/1024/firework03.png', 'fireworks display', 30, 7.5, 1.0, 10, 123],
|
103 |
]
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}"""
|
109 |
|
110 |
with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
|
@@ -116,7 +117,7 @@ with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
|
|
116 |
with gr.Row():
|
117 |
i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
|
118 |
with gr.Row():
|
119 |
-
i2v_input_text = gr.Text(label='Prompts')
|
120 |
with gr.Row():
|
121 |
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
|
122 |
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
|
@@ -125,7 +126,6 @@ with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
|
|
125 |
i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
|
126 |
i2v_motion = gr.Slider(minimum=5, maximum=20, step=1, elem_id="i2v_motion", label="FPS", value=10)
|
127 |
i2v_end_btn = gr.Button("Generate")
|
128 |
-
# with gr.Tab(label='Result'):
|
129 |
with gr.Row():
|
130 |
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
|
131 |
|
@@ -140,6 +140,4 @@ with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
|
|
140 |
fn = infer
|
141 |
)
|
142 |
|
143 |
-
|
144 |
-
dynamicrafter_iface.launch()
|
145 |
-
|
|
|
19 |
get_latent_z,
|
20 |
save_videos
|
21 |
)
|
22 |
+
from transformers import pipeline
|
23 |
|
24 |
def download_model():
|
25 |
REPO_ID = 'Doubiiu/DynamiCrafter_1024'
|
|
|
36 |
config_file='configs/inference_1024_v1.0.yaml'
|
37 |
config = OmegaConf.load(config_file)
|
38 |
model_config = config.pop("model", OmegaConf.create())
|
39 |
+
model_config['params']['unet_config']['params']['use_checkpoint']=True
|
40 |
model = instantiate_from_config(model_config)
|
41 |
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
|
42 |
model = load_model_checkpoint(model, ckpt_path)
|
43 |
model.eval()
|
44 |
model = model.cuda()
|
45 |
|
46 |
+
# ๋ฒ์ญ ๋ชจ๋ธ ๋ก๋
|
47 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
48 |
+
|
49 |
+
@spaces.GPU(duration=300, gpu_type="h100")
|
50 |
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
|
51 |
+
# ํ๊ธ ์
๋ ฅ ํ์ธ ๋ฐ ๋ฒ์ญ
|
52 |
+
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
|
53 |
+
translated = translator(prompt, max_length=512)
|
54 |
+
prompt = translated[0]['translation_text']
|
55 |
+
|
56 |
resolution = (576, 1024)
|
57 |
save_fps = 8
|
58 |
seed_everything(seed)
|
|
|
60 |
transforms.Resize(min(resolution)),
|
61 |
transforms.CenterCrop(resolution),
|
62 |
])
|
63 |
+
torch.cuda.empty_cache()
|
64 |
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
|
65 |
start = time.time()
|
66 |
if steps > 60:
|
|
|
72 |
h, w = resolution[0] // 8, resolution[1] // 8
|
73 |
noise_shape = [batch_size, channels, frames, h, w]
|
74 |
|
75 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
|
|
76 |
text_emb = model.get_learned_conditioning([prompt])
|
77 |
|
|
|
78 |
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
|
79 |
img_tensor = (img_tensor / 255. - 0.5) * 2
|
80 |
+
image_tensor_resized = transform(img_tensor)
|
81 |
+
videos = image_tensor_resized.unsqueeze(0)
|
82 |
|
83 |
+
z = get_latent_z(model, videos.unsqueeze(2))
|
84 |
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
|
85 |
|
86 |
+
cond_images = model.embedder(img_tensor.unsqueeze(0))
|
87 |
img_emb = model.image_proj_model(cond_images)
|
88 |
|
89 |
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
|
|
|
91 |
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
|
92 |
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
|
93 |
|
|
|
94 |
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
|
|
|
95 |
|
96 |
video_path = './output.mp4'
|
97 |
save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
|
98 |
return video_path
|
99 |
|
|
|
100 |
i2v_examples = [
|
101 |
['prompts/1024/astronaut04.png', 'a man in an astronaut suit playing a guitar', 30, 7.5, 1.0, 6, 123],
|
102 |
['prompts/1024/bloom01.png', 'time-lapse of a blooming flower with leaves and a stem', 30, 7.5, 1.0, 10, 123],
|
|
|
106 |
['prompts/1024/firework03.png', 'fireworks display', 30, 7.5, 1.0, 10, 123],
|
107 |
]
|
108 |
|
|
|
|
|
|
|
109 |
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}"""
|
110 |
|
111 |
with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
|
|
|
117 |
with gr.Row():
|
118 |
i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
|
119 |
with gr.Row():
|
120 |
+
i2v_input_text = gr.Text(label='Prompts (ํ๊ธ ์
๋ ฅ ๊ฐ๋ฅ)')
|
121 |
with gr.Row():
|
122 |
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
|
123 |
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
|
|
|
126 |
i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
|
127 |
i2v_motion = gr.Slider(minimum=5, maximum=20, step=1, elem_id="i2v_motion", label="FPS", value=10)
|
128 |
i2v_end_btn = gr.Button("Generate")
|
|
|
129 |
with gr.Row():
|
130 |
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
|
131 |
|
|
|
140 |
fn = infer
|
141 |
)
|
142 |
|
143 |
+
dynamicrafter_iface.launch(server_port=7890, server_name="0.0.0.0", share=True)
|
|
|
|