fantaxy commited on
Commit
01a0b3d
ยท
verified ยท
1 Parent(s): 4de476c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -21
app.py CHANGED
@@ -19,6 +19,7 @@ from funcs import (
19
  get_latent_z,
20
  save_videos
21
  )
 
22
 
23
  def download_model():
24
  REPO_ID = 'Doubiiu/DynamiCrafter_1024'
@@ -35,15 +36,23 @@ ckpt_path='checkpoints/dynamicrafter_1024_v1/model.ckpt'
35
  config_file='configs/inference_1024_v1.0.yaml'
36
  config = OmegaConf.load(config_file)
37
  model_config = config.pop("model", OmegaConf.create())
38
- model_config['params']['unet_config']['params']['use_checkpoint']=True # Checkpoint ์‚ฌ์šฉํ•˜์—ฌ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ ์ตœ์ ํ™”
39
  model = instantiate_from_config(model_config)
40
  assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
41
  model = load_model_checkpoint(model, ckpt_path)
42
  model.eval()
43
  model = model.cuda()
44
 
45
- @spaces.GPU(duration=300, gpu_type="h100") # H100 GPU ์‚ฌ์šฉ ์ง€์ •
 
 
 
46
  def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
 
 
 
 
 
47
  resolution = (576, 1024)
48
  save_fps = 8
49
  seed_everything(seed)
@@ -51,7 +60,7 @@ def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
51
  transforms.Resize(min(resolution)),
52
  transforms.CenterCrop(resolution),
53
  ])
54
- torch.cuda.empty_cache() # GPU ์บ์‹œ ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ
55
  print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
56
  start = time.time()
57
  if steps > 60:
@@ -63,20 +72,18 @@ def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
63
  h, w = resolution[0] // 8, resolution[1] // 8
64
  noise_shape = [batch_size, channels, frames, h, w]
65
 
66
- # ํ…์ŠคํŠธ ์กฐ๊ฑด ์ƒ์„ฑ
67
- with torch.no_grad(), torch.cuda.amp.autocast(): # ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ๊ฐ์†Œ ๋ฐ ์—ฐ์‚ฐ ์†๋„ ๊ฐœ์„ 
68
  text_emb = model.get_learned_conditioning([prompt])
69
 
70
- # ์ด๋ฏธ์ง€ ์กฐ๊ฑด ์ƒ์„ฑ
71
  img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
72
  img_tensor = (img_tensor / 255. - 0.5) * 2
73
- image_tensor_resized = transform(img_tensor) #3,256,256
74
- videos = image_tensor_resized.unsqueeze(0) # bchw
75
 
76
- z = get_latent_z(model, videos.unsqueeze(2)) #bc,1,hw
77
  img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
78
 
79
- cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
80
  img_emb = model.image_proj_model(cond_images)
81
 
82
  imtext_cond = torch.cat([text_emb, img_emb], dim=1)
@@ -84,15 +91,12 @@ def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
84
  fs = torch.tensor([fs], dtype=torch.long, device=model.device)
85
  cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
86
 
87
- # ์ถ”๋ก 
88
  batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
89
- # b,samples,c,t,h,w
90
 
91
  video_path = './output.mp4'
92
  save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
93
  return video_path
94
 
95
-
96
  i2v_examples = [
97
  ['prompts/1024/astronaut04.png', 'a man in an astronaut suit playing a guitar', 30, 7.5, 1.0, 6, 123],
98
  ['prompts/1024/bloom01.png', 'time-lapse of a blooming flower with leaves and a stem', 30, 7.5, 1.0, 10, 123],
@@ -102,9 +106,6 @@ i2v_examples = [
102
  ['prompts/1024/firework03.png', 'fireworks display', 30, 7.5, 1.0, 10, 123],
103
  ]
104
 
105
-
106
-
107
-
108
  css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}"""
109
 
110
  with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
@@ -116,7 +117,7 @@ with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
116
  with gr.Row():
117
  i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
118
  with gr.Row():
119
- i2v_input_text = gr.Text(label='Prompts')
120
  with gr.Row():
121
  i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
122
  i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
@@ -125,7 +126,6 @@ with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
125
  i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
126
  i2v_motion = gr.Slider(minimum=5, maximum=20, step=1, elem_id="i2v_motion", label="FPS", value=10)
127
  i2v_end_btn = gr.Button("Generate")
128
- # with gr.Tab(label='Result'):
129
  with gr.Row():
130
  i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
131
 
@@ -140,6 +140,4 @@ with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
140
  fn = infer
141
  )
142
 
143
- # ํฌํŠธ 7890 ์„ค์ •, ๋Œ€๊ธฐ์—ด ํ™œ์„ฑํ™”, API ํ™œ์„ฑํ™”
144
- dynamicrafter_iface.launch()
145
-
 
19
  get_latent_z,
20
  save_videos
21
  )
22
+ from transformers import pipeline
23
 
24
  def download_model():
25
  REPO_ID = 'Doubiiu/DynamiCrafter_1024'
 
36
  config_file='configs/inference_1024_v1.0.yaml'
37
  config = OmegaConf.load(config_file)
38
  model_config = config.pop("model", OmegaConf.create())
39
+ model_config['params']['unet_config']['params']['use_checkpoint']=True
40
  model = instantiate_from_config(model_config)
41
  assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
42
  model = load_model_checkpoint(model, ckpt_path)
43
  model.eval()
44
  model = model.cuda()
45
 
46
+ # ๋ฒˆ์—ญ ๋ชจ๋ธ ๋กœ๋“œ
47
+ translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
48
+
49
+ @spaces.GPU(duration=300, gpu_type="h100")
50
  def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
51
+ # ํ•œ๊ธ€ ์ž…๋ ฅ ํ™•์ธ ๋ฐ ๋ฒˆ์—ญ
52
+ if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
53
+ translated = translator(prompt, max_length=512)
54
+ prompt = translated[0]['translation_text']
55
+
56
  resolution = (576, 1024)
57
  save_fps = 8
58
  seed_everything(seed)
 
60
  transforms.Resize(min(resolution)),
61
  transforms.CenterCrop(resolution),
62
  ])
63
+ torch.cuda.empty_cache()
64
  print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
65
  start = time.time()
66
  if steps > 60:
 
72
  h, w = resolution[0] // 8, resolution[1] // 8
73
  noise_shape = [batch_size, channels, frames, h, w]
74
 
75
+ with torch.no_grad(), torch.cuda.amp.autocast():
 
76
  text_emb = model.get_learned_conditioning([prompt])
77
 
 
78
  img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
79
  img_tensor = (img_tensor / 255. - 0.5) * 2
80
+ image_tensor_resized = transform(img_tensor)
81
+ videos = image_tensor_resized.unsqueeze(0)
82
 
83
+ z = get_latent_z(model, videos.unsqueeze(2))
84
  img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
85
 
86
+ cond_images = model.embedder(img_tensor.unsqueeze(0))
87
  img_emb = model.image_proj_model(cond_images)
88
 
89
  imtext_cond = torch.cat([text_emb, img_emb], dim=1)
 
91
  fs = torch.tensor([fs], dtype=torch.long, device=model.device)
92
  cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
93
 
 
94
  batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
 
95
 
96
  video_path = './output.mp4'
97
  save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
98
  return video_path
99
 
 
100
  i2v_examples = [
101
  ['prompts/1024/astronaut04.png', 'a man in an astronaut suit playing a guitar', 30, 7.5, 1.0, 6, 123],
102
  ['prompts/1024/bloom01.png', 'time-lapse of a blooming flower with leaves and a stem', 30, 7.5, 1.0, 10, 123],
 
106
  ['prompts/1024/firework03.png', 'fireworks display', 30, 7.5, 1.0, 10, 123],
107
  ]
108
 
 
 
 
109
  css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}"""
110
 
111
  with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
 
117
  with gr.Row():
118
  i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
119
  with gr.Row():
120
+ i2v_input_text = gr.Text(label='Prompts (ํ•œ๊ธ€ ์ž…๋ ฅ ๊ฐ€๋Šฅ)')
121
  with gr.Row():
122
  i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
123
  i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
 
126
  i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
127
  i2v_motion = gr.Slider(minimum=5, maximum=20, step=1, elem_id="i2v_motion", label="FPS", value=10)
128
  i2v_end_btn = gr.Button("Generate")
 
129
  with gr.Row():
130
  i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
131
 
 
140
  fn = infer
141
  )
142
 
143
+ dynamicrafter_iface.launch(server_port=7890, server_name="0.0.0.0", share=True)