|
import gradio as gr |
|
import subprocess |
|
import os |
|
import shutil |
|
import tempfile |
|
import spaces |
|
import torch |
|
import sys |
|
import uuid |
|
import re |
|
import numpy as np |
|
import json |
|
import time |
|
import copy |
|
from collections import Counter |
|
|
|
|
|
print("Installing flash-attn...") |
|
subprocess.run( |
|
"pip install flash-attn --no-build-isolation", |
|
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, |
|
shell=True |
|
) |
|
|
|
|
|
from huggingface_hub import snapshot_download |
|
folder_path = './xcodec_mini_infer' |
|
if not os.path.exists(folder_path): |
|
os.mkdir(folder_path) |
|
print(f"Folder created at: {folder_path}") |
|
else: |
|
print(f"Folder already exists at: {folder_path}") |
|
|
|
snapshot_download( |
|
repo_id="m-a-p/xcodec_mini_infer", |
|
local_dir=folder_path |
|
) |
|
|
|
|
|
inference_dir = "." |
|
try: |
|
os.chdir(inference_dir) |
|
print(f"Changed working directory to: {os.getcwd()}") |
|
except FileNotFoundError: |
|
print(f"Directory not found: {inference_dir}") |
|
exit(1) |
|
|
|
|
|
base_path = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append(os.path.join(base_path, 'xcodec_mini_infer')) |
|
sys.path.append(os.path.join(base_path, 'xcodec_mini_infer', 'descriptaudiocodec')) |
|
|
|
|
|
from omegaconf import OmegaConf |
|
import torchaudio |
|
from torchaudio.transforms import Resample |
|
import soundfile as sf |
|
from tqdm import tqdm |
|
from einops import rearrange |
|
from codecmanipulator import CodecManipulator |
|
from mmtokenizer import _MMSentencePieceTokenizer |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList |
|
import glob |
|
from models.soundstream_hubert_new import SoundStream |
|
|
|
|
|
device = "cuda:0" |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"m-a-p/YuE-s1-7B-anneal-en-cot", |
|
torch_dtype=torch.float16, |
|
attn_implementation="flash_attention_2", |
|
).to(device) |
|
model.eval() |
|
try: |
|
|
|
model = torch.compile(model) |
|
except Exception as e: |
|
print("torch.compile not used for model:", e) |
|
|
|
|
|
basic_model_config = os.path.join(folder_path, 'final_ckpt/config.yaml') |
|
resume_path = os.path.join(folder_path, 'final_ckpt/ckpt_00360000.pth') |
|
|
|
|
|
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") |
|
codectool = CodecManipulator("xcodec", 0, 1) |
|
|
|
|
|
model_config = OmegaConf.load(basic_model_config) |
|
|
|
codec_class = eval(model_config.generator.name) |
|
codec_model = codec_class(**model_config.generator.config).to(device) |
|
parameter_dict = torch.load(resume_path, map_location='cpu') |
|
codec_model.load_state_dict(parameter_dict['codec_model']) |
|
codec_model.eval() |
|
try: |
|
codec_model = torch.compile(codec_model) |
|
except Exception as e: |
|
print("torch.compile not used for codec_model:", e) |
|
|
|
|
|
LYRICS_PATTERN = re.compile(r"\[(\w+)\](.*?)\n(?=\[|\Z)", re.DOTALL) |
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def generate_music( |
|
max_new_tokens=5, |
|
run_n_segments=2, |
|
genre_txt=None, |
|
lyrics_txt=None, |
|
use_audio_prompt=False, |
|
audio_prompt_path="", |
|
prompt_start_time=0.0, |
|
prompt_end_time=30.0, |
|
cuda_idx=0, |
|
rescale=False, |
|
): |
|
if use_audio_prompt and not audio_prompt_path: |
|
raise FileNotFoundError("Please provide an audio prompt filepath when 'use_audio_prompt' is enabled!") |
|
max_new_tokens = max_new_tokens * 100 |
|
|
|
with tempfile.TemporaryDirectory() as output_dir: |
|
stage1_output_dir = os.path.join(output_dir, "stage1") |
|
os.makedirs(stage1_output_dir, exist_ok=True) |
|
|
|
|
|
class BlockTokenRangeProcessor(LogitsProcessor): |
|
def __init__(self, start_id, end_id): |
|
|
|
self.blocked_token_ids = list(range(start_id, end_id)) |
|
def __call__(self, input_ids, scores): |
|
scores[:, self.blocked_token_ids] = -float("inf") |
|
return scores |
|
|
|
|
|
def load_audio_mono(filepath, sampling_rate=16000): |
|
audio, sr = torchaudio.load(filepath) |
|
audio = audio.mean(dim=0, keepdim=True) |
|
if sr != sampling_rate: |
|
resampler = Resample(orig_freq=sr, new_freq=sampling_rate) |
|
audio = resampler(audio) |
|
return audio |
|
|
|
|
|
def split_lyrics(lyrics: str): |
|
segments = LYRICS_PATTERN.findall(lyrics) |
|
|
|
return [f"[{tag}]\n{text.strip()}\n\n" for tag, text in segments] |
|
|
|
|
|
genres = genre_txt.strip() if genre_txt else "" |
|
lyrics_segments = split_lyrics(lyrics_txt + "\n") |
|
full_lyrics = "\n".join(lyrics_segments) |
|
|
|
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] |
|
prompt_texts += lyrics_segments |
|
|
|
random_id = uuid.uuid4() |
|
raw_output = None |
|
|
|
|
|
top_p = 0.93 |
|
temperature = 1.0 |
|
repetition_penalty = 1.2 |
|
|
|
|
|
start_of_segment = mmtokenizer.tokenize('[start_of_segment]') |
|
end_of_segment = mmtokenizer.tokenize('[end_of_segment]') |
|
soa_token = mmtokenizer.soa |
|
eoa_token = mmtokenizer.eoa |
|
|
|
|
|
global_prompt_ids = mmtokenizer.tokenize(prompt_texts[0]) |
|
run_n_segments = min(run_n_segments + 1, len(prompt_texts)) |
|
|
|
|
|
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments], desc="Generating segments")): |
|
|
|
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '') |
|
guidance_scale = 1.5 if i <= 1 else 1.2 |
|
if i == 0: |
|
|
|
continue |
|
|
|
|
|
if i == 1: |
|
if use_audio_prompt: |
|
audio_prompt = load_audio_mono(audio_prompt_path) |
|
audio_prompt = audio_prompt.unsqueeze(0) |
|
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16): |
|
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5) |
|
|
|
raw_codes = raw_codes.transpose(0, 1).cpu().numpy().astype(np.int16) |
|
code_ids = codectool.npy2ids(raw_codes[0]) |
|
|
|
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)] |
|
audio_prompt_codec_ids = [soa_token] + codectool.sep_ids + audio_prompt_codec + [eoa_token] |
|
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]") |
|
head_id = global_prompt_ids + sentence_ids |
|
else: |
|
head_id = global_prompt_ids |
|
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [soa_token] + codectool.sep_ids |
|
else: |
|
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [soa_token] + codectool.sep_ids |
|
|
|
prompt_ids_tensor = torch.as_tensor(prompt_ids, device=device).unsqueeze(0) |
|
if raw_output is not None: |
|
|
|
input_ids = torch.cat([raw_output, prompt_ids_tensor], dim=1) |
|
else: |
|
input_ids = prompt_ids_tensor |
|
|
|
|
|
max_context = 16384 - max_new_tokens - 1 |
|
if input_ids.shape[-1] > max_context: |
|
input_ids = input_ids[:, -max_context:] |
|
|
|
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16): |
|
output_seq = model.generate( |
|
input_ids=input_ids, |
|
max_new_tokens=max_new_tokens, |
|
min_new_tokens=100, |
|
do_sample=True, |
|
top_p=top_p, |
|
temperature=temperature, |
|
repetition_penalty=repetition_penalty, |
|
eos_token_id=eoa_token, |
|
pad_token_id=eoa_token, |
|
logits_processor=LogitsProcessorList([ |
|
BlockTokenRangeProcessor(0, 32002), |
|
BlockTokenRangeProcessor(32016, 32016) |
|
]), |
|
guidance_scale=guidance_scale, |
|
use_cache=True |
|
) |
|
|
|
if output_seq[0, -1].item() != eoa_token: |
|
tensor_eoa = torch.as_tensor([[eoa_token]], device=device) |
|
output_seq = torch.cat((output_seq, tensor_eoa), dim=1) |
|
|
|
if raw_output is not None: |
|
new_tokens = output_seq[:, input_ids.shape[-1]:] |
|
raw_output = torch.cat([raw_output, prompt_ids_tensor, new_tokens], dim=1) |
|
else: |
|
raw_output = output_seq |
|
|
|
|
|
ids = raw_output[0].cpu().numpy() |
|
soa_idx = np.where(ids == soa_token)[0] |
|
eoa_idx = np.where(ids == eoa_token)[0] |
|
if len(soa_idx) != len(eoa_idx): |
|
raise ValueError(f'Invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}') |
|
|
|
vocals_list = [] |
|
instrumentals_list = [] |
|
|
|
start_idx = 1 if use_audio_prompt else 0 |
|
for i in range(start_idx, len(soa_idx)): |
|
codec_ids = ids[soa_idx[i] + 1: eoa_idx[i]] |
|
if codec_ids[0] == 32016: |
|
codec_ids = codec_ids[1:] |
|
|
|
codec_ids = codec_ids[:2 * (len(codec_ids) // 2)] |
|
codec_ids = np.array(codec_ids) |
|
reshaped = rearrange(codec_ids, "(n b) -> b n", b=2) |
|
vocals_list.append(codectool.ids2npy(reshaped[0])) |
|
instrumentals_list.append(codectool.ids2npy(reshaped[1])) |
|
vocals = np.concatenate(vocals_list, axis=1) |
|
instrumentals = np.concatenate(instrumentals_list, axis=1) |
|
|
|
|
|
vocal_save_path = os.path.join(stage1_output_dir, f"vocal_{str(random_id).replace('.', '@')}.npy") |
|
inst_save_path = os.path.join(stage1_output_dir, f"instrumental_{str(random_id).replace('.', '@')}.npy") |
|
np.save(vocal_save_path, vocals) |
|
np.save(inst_save_path, instrumentals) |
|
stage1_output_set = [vocal_save_path, inst_save_path] |
|
|
|
print("Converting to Audio...") |
|
|
|
|
|
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
limit = 0.99 |
|
max_val = wav.abs().max().item() |
|
if rescale and max_val > 0: |
|
wav = wav * (limit / max_val) |
|
else: |
|
wav = wav.clamp(-limit, limit) |
|
torchaudio.save(path, wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16) |
|
|
|
|
|
recons_output_dir = os.path.join(output_dir, "recons") |
|
recons_mix_dir = os.path.join(recons_output_dir, "mix") |
|
os.makedirs(recons_mix_dir, exist_ok=True) |
|
tracks = [] |
|
for npy_path in stage1_output_set: |
|
codec_result = np.load(npy_path) |
|
with torch.inference_mode(): |
|
|
|
input_tensor = torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device) |
|
decoded_waveform = codec_model.decode(input_tensor) |
|
decoded_waveform = decoded_waveform.cpu().squeeze(0) |
|
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy_path))[0] + ".mp3") |
|
tracks.append(save_path) |
|
save_audio(decoded_waveform, save_path, sample_rate=16000) |
|
|
|
|
|
for inst_path in tracks: |
|
try: |
|
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) and 'instrumental' in inst_path: |
|
vocal_path = inst_path.replace('instrumental', 'vocal') |
|
if not os.path.exists(vocal_path): |
|
continue |
|
|
|
vocal_stem, sr = sf.read(vocal_path) |
|
instrumental_stem, _ = sf.read(inst_path) |
|
mix_stem = (vocal_stem + instrumental_stem) / 1.0 |
|
mix_path = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed')) |
|
|
|
|
|
return (sr, (mix_stem * 32767).astype(np.int16)), (sr, (vocal_stem * 32767).astype(np.int16)), (sr, (instrumental_stem * 32767).astype(np.int16)) |
|
except Exception as e: |
|
print("Mixing error:", e) |
|
return None, None, None |
|
|
|
|
|
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=15): |
|
try: |
|
mixed_audio_data, vocal_audio_data, instrumental_audio_data = generate_music( |
|
genre_txt=genre_txt_content, |
|
lyrics_txt=lyrics_txt_content, |
|
run_n_segments=num_segments, |
|
cuda_idx=0, |
|
max_new_tokens=max_new_tokens |
|
) |
|
return mixed_audio_data, vocal_audio_data, instrumental_audio_data |
|
except Exception as e: |
|
gr.Warning("An Error Occurred: " + str(e)) |
|
return None, None, None |
|
finally: |
|
print("Temporary files deleted.") |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation") |
|
gr.HTML( |
|
""" |
|
<div style="display:flex;column-gap:4px;"> |
|
<a href="https://github.com/multimodal-art-projection/YuE"> |
|
<img src='https://img.shields.io/badge/GitHub-Repo-blue'> |
|
</a> |
|
<a href="https://map-yue.github.io"> |
|
<img src='https://img.shields.io/badge/Project-Page-green'> |
|
</a> |
|
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true"> |
|
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space"> |
|
</a> |
|
</div> |
|
""" |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
genre_txt = gr.Textbox(label="Genre") |
|
lyrics_txt = gr.Textbox(label="Lyrics") |
|
with gr.Column(): |
|
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True) |
|
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, interactive=True) |
|
submit_btn = gr.Button("Submit") |
|
music_out = gr.Audio(label="Mixed Audio Result") |
|
with gr.Accordion(label="Vocal and Instrumental Result", open=False): |
|
vocal_out = gr.Audio(label="Vocal Audio") |
|
instrumental_out = gr.Audio(label="Instrumental Audio") |
|
|
|
gr.Examples( |
|
examples=[ |
|
[ |
|
"Bass Metalcore Thrash Metal Furious bright vocal male Angry aggressive vocal Guitar", |
|
"""[verse] |
|
Step back cause I'll ignite |
|
Won't quit without a fight |
|
No escape, gear up, it's a fierce fight |
|
Brace up, raise your hands up and light |
|
Fear the might. Step back cause I'll ignite |
|
Won't back down without a fight |
|
It keeps going and going, the heat is on. |
|
|
|
[chorus] |
|
Hot flame. Hot flame. |
|
Still here, still holding aim |
|
I don't care if I'm bright or dim: nah. |
|
I've made it clear, I'll make it again |
|
All I want is my crew and my gain. |
|
I'm feeling wild, got a bit of rebel style. |
|
Locked inside my mind, hot flame. |
|
""" |
|
], |
|
[ |
|
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", |
|
"""[verse] |
|
Woke up in the morning, sun is shining bright |
|
Chasing all my dreams, gotta get my mind right |
|
City lights are fading, but my vision's clear |
|
Got my team beside me, no room for fear |
|
Walking through the streets, beats inside my head |
|
Every step I take, closer to the bread |
|
People passing by, they don't understand |
|
Building up my future with my own two hands |
|
|
|
[chorus] |
|
This is my life, and I'mma keep it real |
|
Never gonna quit, no, I'm never gonna stop |
|
Through the highs and lows, I'mma keep it real |
|
Living out my dreams with this mic and a deal |
|
""" |
|
] |
|
], |
|
inputs=[genre_txt, lyrics_txt], |
|
outputs=[music_out, vocal_out, instrumental_out], |
|
cache_examples=True, |
|
cache_mode="eager", |
|
fn=infer |
|
) |
|
|
|
submit_btn.click( |
|
fn=infer, |
|
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens], |
|
outputs=[music_out, vocal_out, instrumental_out] |
|
) |
|
gr.Markdown("## Call for Contributions\nIf you find this space interesting please feel free to contribute.") |
|
|
|
demo.queue().launch(show_error=True) |
|
|