|
import gradio as gr |
|
import subprocess |
|
import os |
|
import spaces |
|
import sys |
|
import shutil |
|
import tempfile |
|
import uuid |
|
import re |
|
import time |
|
import copy |
|
from collections import Counter |
|
from tqdm import tqdm |
|
from einops import rearrange |
|
import numpy as np |
|
import json |
|
|
|
import torch |
|
import torchaudio |
|
from torchaudio.transforms import Resample |
|
import soundfile as sf |
|
|
|
|
|
print("Installing flash-attn...") |
|
subprocess.run( |
|
"pip install flash-attn --no-build-isolation", |
|
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, |
|
shell=True |
|
) |
|
|
|
|
|
from huggingface_hub import snapshot_download |
|
folder_path = "./xcodec_mini_infer" |
|
if not os.path.exists(folder_path): |
|
os.mkdir(folder_path) |
|
print(f"Folder created at: {folder_path}") |
|
else: |
|
print(f"Folder already exists at: {folder_path}") |
|
|
|
snapshot_download( |
|
repo_id="m-a-p/xcodec_mini_infer", |
|
local_dir=folder_path |
|
) |
|
|
|
|
|
inference_dir = "." |
|
try: |
|
os.chdir(inference_dir) |
|
print(f"Changed working directory to: {os.getcwd()}") |
|
except FileNotFoundError: |
|
print(f"Directory not found: {inference_dir}") |
|
exit(1) |
|
|
|
|
|
base_path = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append(os.path.join(base_path, "xcodec_mini_infer")) |
|
sys.path.append(os.path.join(base_path, "xcodec_mini_infer", "descriptaudiocodec")) |
|
|
|
|
|
from omegaconf import OmegaConf |
|
from codecmanipulator import CodecManipulator |
|
from mmtokenizer import _MMSentencePieceTokenizer |
|
from transformers import AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList |
|
from models.soundstream_hubert_new import SoundStream |
|
|
|
|
|
from vocoder import build_codec_model, process_audio |
|
from post_process_audio import replace_low_freq_with_energy_matched |
|
|
|
|
|
|
|
STAGE1_MODEL = "m-a-p/YuE-s1-7B-anneal-en-cot" |
|
STAGE2_MODEL = "m-a-p/YuE-s2-1B-general" |
|
|
|
BASIC_MODEL_CONFIG = os.path.join(folder_path, "final_ckpt/config.yaml") |
|
RESUME_PATH = os.path.join(folder_path, "final_ckpt/ckpt_00360000.pth") |
|
VOCAL_DECODER_PATH = os.path.join(folder_path, "decoders/decoder_131000.pth") |
|
INST_DECODER_PATH = os.path.join(folder_path, "decoders/decoder_151000.pth") |
|
VOCODER_CONFIG_PATH = os.path.join(folder_path, "decoders/config.yaml") |
|
|
|
|
|
MAX_NEW_TOKENS = 15 |
|
RUN_N_SEGMENTS = 2 |
|
STAGE2_BATCH_SIZE = 4 |
|
|
|
|
|
|
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
print(f"Using device: {device}") |
|
|
|
|
|
print("Loading Stage 1 model and tokenizer...") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
STAGE1_MODEL, |
|
torch_dtype=torch.float16, |
|
attn_implementation="flash_attention_2", |
|
).to(device) |
|
model.eval() |
|
|
|
model_stage2 = AutoModelForCausalLM.from_pretrained( |
|
STAGE2_MODEL, |
|
torch_dtype=torch.float16, |
|
attn_implementation="flash_attention_2", |
|
).to(device) |
|
model_stage2.eval() |
|
|
|
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") |
|
|
|
|
|
codectool = CodecManipulator("xcodec", 0, 1) |
|
codectool_stage2 = CodecManipulator("xcodec", 0, 8) |
|
|
|
|
|
model_config = OmegaConf.load(BASIC_MODEL_CONFIG) |
|
codec_class = eval(model_config.generator.name) |
|
codec_model = codec_class(**model_config.generator.config).to(device) |
|
parameter_dict = torch.load(RESUME_PATH, map_location="cpu") |
|
codec_model.load_state_dict(parameter_dict["codec_model"]) |
|
codec_model.eval() |
|
|
|
|
|
LYRICS_PATTERN = re.compile(r"\[(\w+)\](.*?)\n(?=\[|\Z)", re.DOTALL) |
|
|
|
|
|
def load_audio_mono(filepath, sampling_rate=16000): |
|
audio, sr = torchaudio.load(filepath) |
|
audio = audio.mean(dim=0, keepdim=True) |
|
if sr != sampling_rate: |
|
resampler = Resample(orig_freq=sr, new_freq=sampling_rate) |
|
audio = resampler(audio) |
|
return audio |
|
|
|
def split_lyrics(lyrics: str): |
|
segments = LYRICS_PATTERN.findall(lyrics) |
|
return [f"[{tag}]\n{text.strip()}\n\n" for tag, text in segments] |
|
|
|
class BlockTokenRangeProcessor(LogitsProcessor): |
|
def __init__(self, start_id, end_id): |
|
self.blocked_token_ids = list(range(start_id, end_id)) |
|
def __call__(self, input_ids, scores): |
|
scores[:, self.blocked_token_ids] = -float("inf") |
|
return scores |
|
|
|
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
limit = 0.99 |
|
max_val = wav.abs().max().item() |
|
if rescale and max_val > 0: |
|
wav = wav * (limit / max_val) |
|
else: |
|
wav = wav.clamp(-limit, limit) |
|
torchaudio.save(path, wav, sample_rate=sample_rate, encoding="PCM_S", bits_per_sample=16) |
|
|
|
|
|
def stage2_generate(model_stage2, prompt, batch_size=16): |
|
""" |
|
Given a prompt (a numpy array of raw codec ids), upsample using the Stage2 model. |
|
""" |
|
|
|
print(f"stage2_generate: received prompt with shape: {prompt.shape}") |
|
codec_ids = codectool.unflatten(prompt, n_quantizer=1) |
|
codec_ids = codectool.offset_tok_ids( |
|
codec_ids, |
|
global_offset=codectool.global_offset, |
|
codebook_size=codectool.codebook_size, |
|
num_codebooks=codectool.num_codebooks, |
|
).astype(np.int32) |
|
|
|
|
|
if batch_size > 1: |
|
codec_list = [] |
|
for i in range(batch_size): |
|
idx_begin = i * 300 |
|
idx_end = (i + 1) * 300 |
|
codec_list.append(codec_ids[:, idx_begin:idx_end]) |
|
codec_ids_concat = np.concatenate(codec_list, axis=0) |
|
prompt_ids = np.concatenate( |
|
[ |
|
np.tile([mmtokenizer.soa, mmtokenizer.stage_1], (batch_size, 1)), |
|
codec_ids_concat, |
|
np.tile([mmtokenizer.stage_2], (batch_size, 1)), |
|
], |
|
axis=1, |
|
) |
|
else: |
|
prompt_ids = np.concatenate( |
|
[ |
|
np.array([mmtokenizer.soa, mmtokenizer.stage_1]), |
|
codec_ids.flatten(), |
|
np.array([mmtokenizer.stage_2]), |
|
] |
|
).astype(np.int32) |
|
prompt_ids = prompt_ids[np.newaxis, ...] |
|
|
|
codec_ids_tensor = torch.as_tensor(codec_ids).to(device) |
|
prompt_ids_tensor = torch.as_tensor(prompt_ids).to(device) |
|
len_prompt = prompt_ids_tensor.shape[-1] |
|
|
|
block_list = LogitsProcessorList([ |
|
BlockTokenRangeProcessor(0, 46358), |
|
BlockTokenRangeProcessor(53526, mmtokenizer.vocab_size) |
|
]) |
|
|
|
|
|
for frames_idx in range(codec_ids_tensor.shape[1]): |
|
cb0 = codec_ids_tensor[:, frames_idx:frames_idx+1] |
|
prompt_ids_tensor = torch.cat([prompt_ids_tensor, cb0], dim=1) |
|
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16): |
|
stage2_output = model_stage2.generate( |
|
input_ids=prompt_ids_tensor, |
|
min_new_tokens=7, |
|
max_new_tokens=7, |
|
eos_token_id=mmtokenizer.eoa, |
|
pad_token_id=mmtokenizer.eoa, |
|
logits_processor=block_list, |
|
use_cache=True |
|
) |
|
|
|
assert stage2_output.shape[1] - prompt_ids_tensor.shape[1] == 7, ( |
|
f"output new tokens={stage2_output.shape[1]-prompt_ids_tensor.shape[1]}" |
|
) |
|
prompt_ids_tensor = stage2_output |
|
|
|
|
|
if batch_size > 1: |
|
output = prompt_ids_tensor.cpu().numpy()[:, len_prompt:] |
|
|
|
output_list = [output[i] for i in range(batch_size)] |
|
output = np.concatenate(output_list, axis=0) |
|
else: |
|
output = prompt_ids_tensor[0].cpu().numpy()[len_prompt:] |
|
return output |
|
|
|
def stage2_inference(model_stage2, stage1_output_set, stage2_output_dir, batch_size=4): |
|
stage2_result = [] |
|
for path in tqdm(stage1_output_set, desc="Stage2 Inference"): |
|
output_filename = os.path.join(stage2_output_dir, os.path.basename(path)) |
|
if os.path.exists(output_filename): |
|
print(f"{output_filename} already processed.") |
|
stage2_result.append(output_filename) |
|
continue |
|
|
|
prompt = np.load(path).astype(np.int32) |
|
|
|
if prompt.ndim == 1: |
|
prompt = prompt[np.newaxis, :] |
|
print(f"Loaded prompt from {path} with shape: {prompt.shape}") |
|
|
|
|
|
total_duration_sec = prompt.shape[-1] // 50 |
|
if total_duration_sec < 6: |
|
|
|
output_duration = total_duration_sec |
|
print(f"Prompt too short for 6-sec segmentation. Using full duration: {output_duration} seconds.") |
|
else: |
|
output_duration = (total_duration_sec // 6) * 6 |
|
|
|
|
|
if output_duration == 0: |
|
raise ValueError(f"Output duration computed as 0 for {path}. Prompt length: {prompt.shape[-1]} tokens") |
|
|
|
num_batch = output_duration // 6 |
|
|
|
|
|
if num_batch <= batch_size: |
|
output = stage2_generate(model_stage2, prompt[:, :output_duration*50], batch_size=num_batch) |
|
else: |
|
segments = [] |
|
num_segments = (num_batch // batch_size) + (1 if num_batch % batch_size != 0 else 0) |
|
for seg in range(num_segments): |
|
start_idx = seg * batch_size * 300 |
|
end_idx = min((seg + 1) * batch_size * 300, output_duration * 50) |
|
current_batch = batch_size if (seg != num_segments - 1 or num_batch % batch_size == 0) else num_batch % batch_size |
|
segment_prompt = prompt[:, start_idx:end_idx] |
|
if segment_prompt.shape[-1] == 0: |
|
print(f"Warning: empty segment detected for seg {seg}, start {start_idx}, end {end_idx}. Skipping this segment.") |
|
continue |
|
segment = stage2_generate(model_stage2, segment_prompt, batch_size=current_batch) |
|
segments.append(segment) |
|
if len(segments) == 0: |
|
raise ValueError(f"No valid segments produced for {path}.") |
|
output = np.concatenate(segments, axis=0) |
|
|
|
|
|
if output_duration * 50 != prompt.shape[-1]: |
|
ending = stage2_generate(model_stage2, prompt[:, output_duration * 50:], batch_size=1) |
|
output = np.concatenate([output, ending], axis=0) |
|
|
|
|
|
output = codectool_stage2.ids2npy(output) |
|
|
|
|
|
fixed_output = copy.deepcopy(output) |
|
for i, line in enumerate(output): |
|
for j, element in enumerate(line): |
|
if element < 0 or element > 1023: |
|
counter = Counter(line) |
|
most_common = sorted(counter.items(), key=lambda x: x[1], reverse=True)[0][0] |
|
fixed_output[i, j] = most_common |
|
|
|
np.save(output_filename, fixed_output) |
|
stage2_result.append(output_filename) |
|
return stage2_result |
|
|
|
|
|
@spaces.GPU(duration=175) |
|
def generate_music( |
|
genre_txt="", |
|
lyrics_txt="", |
|
max_new_tokens=2, |
|
run_n_segments=1, |
|
use_audio_prompt=False, |
|
audio_prompt_path="", |
|
prompt_start_time=0.0, |
|
prompt_end_time=30.0, |
|
rescale=False, |
|
): |
|
|
|
max_new_tokens_scaled = max_new_tokens * 50 |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
stage1_output_dir = os.path.join(tmp_dir, "stage1") |
|
stage2_output_dir = os.path.join(tmp_dir, "stage2") |
|
os.makedirs(stage1_output_dir, exist_ok=True) |
|
os.makedirs(stage2_output_dir, exist_ok=True) |
|
|
|
|
|
genres = genre_txt.strip() |
|
lyrics_segments = split_lyrics(lyrics_txt + "\n") |
|
full_lyrics = "\n".join(lyrics_segments) |
|
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] |
|
prompt_texts += lyrics_segments |
|
|
|
random_id = uuid.uuid4() |
|
raw_output = None |
|
|
|
|
|
top_p = 0.93 |
|
temperature = 1.0 |
|
repetition_penalty = 1.2 |
|
|
|
|
|
start_of_segment = mmtokenizer.tokenize("[start_of_segment]") |
|
end_of_segment = mmtokenizer.tokenize("[end_of_segment]") |
|
soa_token = mmtokenizer.soa |
|
eoa_token = mmtokenizer.eoa |
|
|
|
global_prompt_ids = mmtokenizer.tokenize(prompt_texts[0]) |
|
run_n = min(run_n_segments + 1, len(prompt_texts)) |
|
for i, p in enumerate(tqdm(prompt_texts[:run_n], desc="Stage1 Generation")): |
|
section_text = p.replace("[start_of_segment]", "").replace("[end_of_segment]", "") |
|
guidance_scale = 1.5 if i <= 1 else 1.2 |
|
if i == 0: |
|
continue |
|
if i == 1: |
|
if use_audio_prompt: |
|
audio_prompt = load_audio_mono(audio_prompt_path) |
|
audio_prompt = audio_prompt.unsqueeze(0) |
|
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16): |
|
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5) |
|
raw_codes = raw_codes.transpose(0, 1).cpu().numpy().astype(np.int16) |
|
code_ids = codectool.npy2ids(raw_codes[0]) |
|
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)] |
|
audio_prompt_codec_ids = [soa_token] + codectool.sep_ids + audio_prompt_codec + [eoa_token] |
|
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]") |
|
head_id = global_prompt_ids + sentence_ids |
|
else: |
|
head_id = global_prompt_ids |
|
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [soa_token] + codectool.sep_ids |
|
else: |
|
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [soa_token] + codectool.sep_ids |
|
|
|
prompt_ids_tensor = torch.as_tensor(prompt_ids, device=device).unsqueeze(0) |
|
if raw_output is not None: |
|
input_ids = torch.cat([raw_output, prompt_ids_tensor], dim=1) |
|
else: |
|
input_ids = prompt_ids_tensor |
|
|
|
max_context = 16384 - max_new_tokens_scaled - 1 |
|
if input_ids.shape[-1] > max_context: |
|
input_ids = input_ids[:, -max_context:] |
|
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16): |
|
output_seq = model.generate( |
|
input_ids=input_ids, |
|
max_new_tokens=max_new_tokens_scaled, |
|
min_new_tokens=100, |
|
do_sample=True, |
|
top_p=top_p, |
|
temperature=temperature, |
|
repetition_penalty=repetition_penalty, |
|
eos_token_id=eoa_token, |
|
pad_token_id=eoa_token, |
|
logits_processor=LogitsProcessorList([ |
|
BlockTokenRangeProcessor(0, 32002), |
|
BlockTokenRangeProcessor(32016, 32016) |
|
]), |
|
guidance_scale=guidance_scale, |
|
use_cache=True, |
|
) |
|
if output_seq[0, -1].item() != eoa_token: |
|
tensor_eoa = torch.as_tensor([[eoa_token]], device=device) |
|
output_seq = torch.cat((output_seq, tensor_eoa), dim=1) |
|
if raw_output is not None: |
|
new_tokens = output_seq[:, input_ids.shape[-1]:] |
|
raw_output = torch.cat([raw_output, prompt_ids_tensor, new_tokens], dim=1) |
|
else: |
|
raw_output = output_seq |
|
|
|
|
|
ids = raw_output[0].cpu().numpy() |
|
soa_idx = np.where(ids == soa_token)[0] |
|
eoa_idx = np.where(ids == eoa_token)[0] |
|
if len(soa_idx) != len(eoa_idx): |
|
raise ValueError(f"invalid pairs of soa and eoa: {len(soa_idx)} vs {len(eoa_idx)}") |
|
vocals_list = [] |
|
instrumentals_list = [] |
|
range_begin = 1 if use_audio_prompt else 0 |
|
for i in range(range_begin, len(soa_idx)): |
|
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]] |
|
if codec_ids[0] == 32016: |
|
codec_ids = codec_ids[1:] |
|
codec_ids = codec_ids[:2 * (len(codec_ids) // 2)] |
|
reshaped = rearrange(codec_ids, "(n b) -> b n", b=2) |
|
vocals_list.append(codectool.ids2npy(reshaped[0])) |
|
instrumentals_list.append(codectool.ids2npy(reshaped[1])) |
|
vocals = np.concatenate(vocals_list, axis=1) |
|
instrumentals = np.concatenate(instrumentals_list, axis=1) |
|
vocal_save_path = os.path.join(stage1_output_dir, f"vocal_{str(random_id).replace('.', '@')}.npy") |
|
inst_save_path = os.path.join(stage1_output_dir, f"instrumental_{str(random_id).replace('.', '@')}.npy") |
|
np.save(vocal_save_path, vocals) |
|
np.save(inst_save_path, instrumentals) |
|
stage1_output_set = [vocal_save_path, inst_save_path] |
|
|
|
|
|
model.cpu() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
print("Stage 2 inference...") |
|
|
|
stage2_result = stage2_inference(model_stage2, stage1_output_set, stage2_output_dir, batch_size=STAGE2_BATCH_SIZE) |
|
print("Stage 2 inference completed.") |
|
|
|
|
|
recons_output_dir = os.path.join(tmp_dir, "recons") |
|
recons_mix_dir = os.path.join(recons_output_dir, "mix") |
|
os.makedirs(recons_mix_dir, exist_ok=True) |
|
tracks = [] |
|
for npy in stage2_result: |
|
codec_result = np.load(npy) |
|
with torch.inference_mode(): |
|
input_tensor = torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device) |
|
decoded_waveform = codec_model.decode(input_tensor) |
|
decoded_waveform = decoded_waveform.cpu().squeeze(0) |
|
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3") |
|
tracks.append(save_path) |
|
save_audio(decoded_waveform, save_path, 16000, rescale) |
|
|
|
mix_audio = None |
|
vocal_audio = None |
|
instrumental_audio = None |
|
for inst_path in tracks: |
|
try: |
|
if (inst_path.endswith(".wav") or inst_path.endswith(".mp3")) and "instrumental" in inst_path: |
|
vocal_path = inst_path.replace("instrumental", "vocal") |
|
if not os.path.exists(vocal_path): |
|
continue |
|
vocal_data, sr = sf.read(vocal_path) |
|
instrumental_data, _ = sf.read(inst_path) |
|
mix_data = (vocal_data + instrumental_data) / 1.0 |
|
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace("instrumental", "mixed")) |
|
sf.write(recons_mix, mix_data, sr) |
|
mix_audio = (sr, (mix_data * 32767).astype(np.int16)) |
|
vocal_audio = (sr, (vocal_data * 32767).astype(np.int16)) |
|
instrumental_audio = (sr, (instrumental_data * 32767).astype(np.int16)) |
|
except Exception as e: |
|
print("Mixing error:", e) |
|
return None, None, None |
|
|
|
|
|
print("Vocoder upsampling...") |
|
vocal_decoder, inst_decoder = build_codec_model(VOCODER_CONFIG_PATH, VOCAL_DECODER_PATH, INST_DECODER_PATH) |
|
vocoder_output_dir = os.path.join(tmp_dir, "vocoder") |
|
vocoder_stems_dir = os.path.join(vocoder_output_dir, "stems") |
|
vocoder_mix_dir = os.path.join(vocoder_output_dir, "mix") |
|
os.makedirs(vocoder_stems_dir, exist_ok=True) |
|
os.makedirs(vocoder_mix_dir, exist_ok=True) |
|
|
|
if vocal_audio is not None and instrumental_audio is not None: |
|
vocal_output = process_audio( |
|
stage2_result[0], |
|
os.path.join(vocoder_stems_dir, "vocal.mp3"), |
|
rescale, |
|
None, |
|
vocal_decoder, |
|
codec_model, |
|
) |
|
instrumental_output = process_audio( |
|
stage2_result[1], |
|
os.path.join(vocoder_stems_dir, "instrumental.mp3"), |
|
rescale, |
|
None, |
|
inst_decoder, |
|
codec_model, |
|
) |
|
try: |
|
mix_output = instrumental_output + vocal_output |
|
vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix)) |
|
save_audio(mix_output, vocoder_mix, 44100, rescale) |
|
print(f"Created vocoder mix: {vocoder_mix}") |
|
except RuntimeError as e: |
|
print(e) |
|
print("Mixing vocoder outputs failed!") |
|
else: |
|
print("Missing vocal/instrumental outputs for vocoder stage.") |
|
|
|
|
|
final_mix_path = os.path.join(tmp_dir, "final_mix.mp3") |
|
try: |
|
replace_low_freq_with_energy_matched( |
|
a_file=recons_mix, |
|
b_file=vocoder_mix, |
|
c_file=final_mix_path, |
|
cutoff_freq=5500.0 |
|
) |
|
except Exception as e: |
|
print("Post processing error:", e) |
|
final_mix_path = recons_mix |
|
|
|
|
|
final_audio, vocal_audio, instrumental_audio = None, None, None |
|
try: |
|
final_audio_data, sr = sf.read(final_mix_path) |
|
final_audio = (sr, (final_audio_data * 32767).astype(np.int16)) |
|
except Exception as e: |
|
print("Final mix read error:", e) |
|
return final_audio, vocal_audio, instrumental_audio |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
gr.Markdown("# YuE: Full-Song Generation (Stage1 + Stage2)") |
|
gr.HTML( |
|
""" |
|
<div style="display:flex; column-gap:4px;"> |
|
<a href="https://github.com/multimodal-art-projection/YuE"><img src='https://img.shields.io/badge/GitHub-Repo-blue'></a> |
|
<a href="https://map-yue.github.io"><img src='https://img.shields.io/badge/Project-Page-green'></a> |
|
</div> |
|
""" |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
genre_txt = gr.Textbox(label="Genre", placeholder="e.g. Bass Metalcore Thrash Metal Furious bright vocal male") |
|
lyrics_txt = gr.Textbox(label="Lyrics", placeholder="Paste lyrics with segments such as [verse], [chorus], etc.") |
|
with gr.Column(): |
|
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True) |
|
max_new_tokens = gr.Slider(label="Duration of song (sec)", minimum=1, maximum=30, step=1, value=15, interactive=True) |
|
use_audio_prompt = gr.Checkbox(label="Use Audio Prompt", value=False) |
|
audio_prompt_path = gr.Textbox(label="Audio Prompt Filepath (if used)", placeholder="Path to audio file") |
|
submit_btn = gr.Button("Submit") |
|
music_out = gr.Audio(label="Mixed Audio Result") |
|
with gr.Accordion(label="Vocal and Instrumental Results", open=False): |
|
vocal_out = gr.Audio(label="Vocal Audio") |
|
instrumental_out = gr.Audio(label="Instrumental Audio") |
|
gr.Examples( |
|
examples=[ |
|
[ |
|
"Bass Metalcore Thrash Metal Furious bright vocal male Angry aggressive vocal Guitar", |
|
"""[verse] |
|
Step back cause I'll ignite |
|
Won't quit without a fight |
|
No escape, gear up, it's a fierce fight |
|
Brace up, raise your hands up and light |
|
Fear the might. Step back cause I'll ignite |
|
Won't back down without a fight |
|
It keeps going and going, the heat is on. |
|
|
|
[chorus] |
|
Hot flame. Hot flame. |
|
Still here, still holding aim |
|
I don't care if I'm bright or dim: nah. |
|
I've made it clear, I'll make it again |
|
All I want is my crew and my gain. |
|
I'm feeling wild, got a bit of rebel style. |
|
Locked inside my mind, hot flame. |
|
""" |
|
], |
|
[ |
|
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", |
|
"""[verse] |
|
Woke up in the morning, sun is shining bright |
|
Chasing all my dreams, gotta get my mind right |
|
City lights are fading, but my vision's clear |
|
Got my team beside me, no room for fear |
|
Walking through the streets, beats inside my head |
|
Every step I take, closer to the bread |
|
People passing by, they don't understand |
|
Building up my future with my own two hands |
|
|
|
[chorus] |
|
This is my life, and I'mma keep it real |
|
Never gonna quit, no, I'm never gonna stop |
|
Through the highs and lows, I'mma keep it real |
|
Living out my dreams with this mic and a deal |
|
""" |
|
] |
|
], |
|
inputs=[genre_txt, lyrics_txt], |
|
outputs=[music_out, vocal_out, instrumental_out], |
|
cache_examples=True, |
|
cache_mode="eager", |
|
fn=generate_music |
|
) |
|
submit_btn.click( |
|
fn=generate_music, |
|
inputs=[genre_txt, lyrics_txt, max_new_tokens, num_segments, use_audio_prompt, audio_prompt_path], |
|
outputs=[music_out, vocal_out, instrumental_out] |
|
) |
|
gr.Markdown("## Contributions Welcome\nFeel free to contribute improvements or fixes.") |
|
|
|
demo.queue().launch(show_error=True) |
|
|