KingNish's picture
modified: app.py
b1860c5
raw
history blame
19.7 kB
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import torch
from huggingface_hub import snapshot_download
import uuid
import time
import copy
from collections import Counter
import re
import numpy as np
import torchaudio
import soundfile as sf
from torchaudio.transforms import Resample
from einops import rearrange
from tqdm import tqdm
from omegaconf import OmegaConf
import spaces
# --- Constants and Environment Setup ---
IS_SHARED_UI = "innova-ai/YuE-music-generator-demo" in os.environ.get('SPACE_ID', '')
OUTPUT_DIR = "./output"
XCODEC_FOLDER = "./xcodec_mini_infer"
MM_TOKENIZER_PATH = "./mm_tokenizer_v0.2_hf/tokenizer.model"
STAGE1_MODEL_NAME = "m-a-p/YuE-s1-7B-anneal-en-cot"
# --- Utility Functions ---
def install_flash_attn():
"""Installs flash-attn using pip."""
try:
print("Installing flash-attn...")
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
check=True # Raise an exception if the command fails
)
print("flash-attn installed successfully!")
except subprocess.CalledProcessError as e:
print(f"Failed to install flash-attn: {e}")
exit(1)
def download_xcodec_model(folder_path):
"""Downloads xcodec model from huggingface hub."""
if not os.path.exists(folder_path):
os.makedirs(folder_path, exist_ok=True)
print(f"Folder created at: {folder_path}")
else:
print(f"Folder already exists at: {folder_path}")
snapshot_download(
repo_id = "m-a-p/xcodec_mini_infer",
local_dir = folder_path
)
print(f"Downloaded xcodec model to {folder_path}")
def change_working_directory(directory):
"""Changes the working directory."""
try:
os.chdir(directory)
print(f"Changed working directory to: {os.getcwd()}")
except FileNotFoundError:
print(f"Directory not found: {directory}")
exit(1)
def empty_output_folder(output_dir):
"""Clears the output directory."""
if not os.path.exists(output_dir):
return
for file in os.listdir(output_dir):
file_path = os.path.join(output_dir, file)
try:
if os.path.isdir(file_path):
shutil.rmtree(file_path)
else:
os.remove(file_path)
except Exception as e:
print(f"Error deleting file {file_path}: {e}")
def create_temp_file(content, prefix, suffix=".txt"):
"""Creates a temporary file with given content."""
content = content.strip() + "\n\n"
content = content.replace("\r\n", "\n").replace("\r", "\n")
with tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix) as temp_file:
temp_file.write(content)
temp_file_name = temp_file.name
print(f"\nContent written to {prefix}{suffix}:")
print(content)
print("---")
return temp_file_name
def get_last_mp3_file(output_dir):
"""Returns the path to the most recently modified .mp3 file in the directory, or None if none exists."""
mp3_files = [os.path.join(output_dir, file) for file in os.listdir(output_dir) if file.endswith('.mp3')]
if not mp3_files:
print("No .mp3 files found in the output folder.")
return None
return max(mp3_files, key=os.path.getmtime)
def load_audio_mono(filepath, sampling_rate=16000):
"""Loads an audio file and converts it to mono at the desired sample rate."""
audio, sr = torchaudio.load(filepath)
audio = torch.mean(audio, dim=0, keepdim=True) # Convert to mono
if sr != sampling_rate:
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
audio = resampler(audio)
return audio
def split_lyrics(lyrics: str):
"""Splits lyrics into segments based on the [section] tags."""
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
segments = re.findall(pattern, lyrics, re.DOTALL)
return [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
"""Saves a torch audio tensor to a file."""
os.makedirs(os.path.dirname(path), exist_ok=True)
limit = 0.99
max_val = wav.abs().max()
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
# --- Model Initialization ---
def initialize_models(device):
"""Initializes and loads all required models."""
print(f"Using device: {device}")
# Load Stage 1 Model
stage1_model = AutoModelForCausalLM.from_pretrained(
STAGE1_MODEL_NAME,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
).to(device).eval()
# Load Tokenizer
mmtokenizer = _MMSentencePieceTokenizer(MM_TOKENIZER_PATH)
# Load Codec Model
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
from codecmanipulator import CodecManipulator
from models.soundstream_hubert_new import SoundStream
codectool = CodecManipulator("xcodec", 0, 1)
basic_model_config=os.path.join(XCODEC_FOLDER, "final_ckpt", "config.yaml")
resume_path=os.path.join(XCODEC_FOLDER, "final_ckpt", "ckpt_00360000.pth")
model_config = OmegaConf.load(basic_model_config)
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
parameter_dict = torch.load(resume_path, map_location='cpu')
codec_model.load_state_dict(parameter_dict['codec_model'])
codec_model.to(device).eval()
return stage1_model, mmtokenizer, codectool, codec_model
# --- Logits Processor ---
class BlockTokenRangeProcessor(LogitsProcessor):
def __init__(self, start_id, end_id):
self.blocked_token_ids = list(range(start_id, end_id))
def __call__(self, input_ids, scores):
scores[:, self.blocked_token_ids] = -float("inf")
return scores
# --- Music Generation Core Function ---
@spaces.GPU(duration=120)
def generate_music(
stage1_model,
mmtokenizer,
codectool,
codec_model,
max_new_tokens=3000,
run_n_segments=2,
genre_txt=None,
lyrics_txt=None,
use_audio_prompt=False,
audio_prompt_path="",
prompt_start_time=0.0,
prompt_end_time=30.0,
output_dir=OUTPUT_DIR,
keep_intermediate=False,
disable_offload_model=False,
cuda_idx=0,
rescale=False,
):
if use_audio_prompt and not audio_prompt_path:
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
stage1_output_dir = os.path.join(output_dir, f"stage1")
os.makedirs(stage1_output_dir, exist_ok=True)
device = torch.device(f"cuda:{cuda_idx}" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load Model Parameters for decoding
class BlockTokenRangeProcessor(LogitsProcessor):
def __init__(self, start_id, end_id):
self.blocked_token_ids = list(range(start_id, end_id))
def __call__(self, input_ids, scores):
scores[:, self.blocked_token_ids] = -float("inf")
return scores
# Split lyrics
genres = genre_txt.strip()
lyrics = split_lyrics(lyrics_txt+"\n")
full_lyrics = "\n".join(lyrics)
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
prompt_texts += lyrics
random_id = uuid.uuid4()
output_seq = None
top_p = 0.93
temperature = 1.0
repetition_penalty = 1.2
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
raw_output = None
run_n_segments = min(run_n_segments+1, len(lyrics))
stage1_output_set = []
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
guidance_scale = 1.5 if i <=1 else 1.2
if i==0:
continue
if i==1:
if use_audio_prompt:
audio_prompt = load_audio_mono(audio_prompt_path)
audio_prompt.unsqueeze_(0)
with torch.no_grad():
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
raw_codes = raw_codes.transpose(0, 1)
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
# Format audio prompt
code_ids = codectool.npy2ids(raw_codes[0])
audio_prompt_codec = code_ids[int(prompt_start_time *50): int(prompt_end_time *50)] # 50 is tps of xcodec
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
else:
head_id = mmtokenizer.tokenize(prompt_texts[0])
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
else:
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids
# Use window slicing in case output sequence exceeds the context of model
max_context = 16384-max_new_tokens-1
if input_ids.shape[-1] > max_context:
print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
input_ids = input_ids[:, -(max_context):]
with torch.no_grad():
output_seq = stage1_model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
min_new_tokens=100,
do_sample=True,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=mmtokenizer.eoa,
pad_token_id=mmtokenizer.eoa,
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
guidance_scale=guidance_scale,
)
if output_seq[0][-1].item() != mmtokenizer.eoa:
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(stage1_model.device)
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
if i > 1:
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
else:
raw_output = output_seq
print(len(raw_output))
# save raw output and check sanity
ids = raw_output[0].cpu().numpy()
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
if len(soa_idx)!=len(eoa_idx):
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
vocals = []
instrumentals = []
range_begin = 1 if use_audio_prompt else 0
for i in range(range_begin, len(soa_idx)):
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
if codec_ids[0] == 32016:
codec_ids = codec_ids[1:]
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
vocals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[0])
vocals.append(vocals_ids)
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[1])
instrumentals.append(instrumentals_ids)
vocals = np.concatenate(vocals, axis=1)
instrumentals = np.concatenate(instrumentals, axis=1)
vocal_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_vocal_{random_id}".replace('.', '@')+'.npy')
inst_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_instrumental_{random_id}".replace('.', '@')+'.npy')
np.save(vocal_save_path, vocals)
np.save(inst_save_path, instrumentals)
stage1_output_set.append(vocal_save_path)
stage1_output_set.append(inst_save_path)
# offload model
if not disable_offload_model:
stage1_model.cpu()
del stage1_model
torch.cuda.empty_cache()
print("Converting to Audio...")
# convert audio tokens to audio
# reconstruct tracks
recons_output_dir = os.path.join(output_dir, "recons")
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
os.makedirs(recons_mix_dir, exist_ok=True)
tracks = []
for npy in stage1_output_set:
codec_result = np.load(npy)
decodec_rlt=[]
with torch.no_grad():
decoded_waveform = codec_model.decode(torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device))
decoded_waveform = decoded_waveform.cpu().squeeze(0)
decodec_rlt.append(torch.as_tensor(decoded_waveform))
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
tracks.append(save_path)
save_audio(decodec_rlt, save_path, 16000)
# mix tracks
for inst_path in tracks:
try:
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
and 'instrumental' in inst_path:
# find pair
vocal_path = inst_path.replace('instrumental', 'vocal')
if not os.path.exists(vocal_path):
continue
# mix
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
vocal_stem, sr = sf.read(inst_path)
instrumental_stem, _ = sf.read(vocal_path)
mix_stem = (vocal_stem + instrumental_stem) / 1
sf.write(recons_mix, mix_stem, sr)
except Exception as e:
print(e)
return recons_mix
# --- Gradio Interface ---
@spaces.GPU(duration=120)
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=200):
"""Main function that runs model and returns output audio."""
os.makedirs(OUTPUT_DIR, exist_ok=True)
print(f"Output folder ensured at: {OUTPUT_DIR}")
empty_output_folder(OUTPUT_DIR)
device = torch.device(f"cuda" if torch.cuda.is_available() else "cpu")
stage1_model, mmtokenizer, codectool, codec_model = initialize_models(device)
try:
music = generate_music(
stage1_model=stage1_model,
mmtokenizer=mmtokenizer,
codectool=codectool,
codec_model=codec_model,
genre_txt=genre_txt_content,
lyrics_txt=lyrics_txt_content,
run_n_segments=num_segments,
output_dir=OUTPUT_DIR,
cuda_idx=0,
max_new_tokens=max_new_tokens
)
return music
except subprocess.CalledProcessError as e:
print(f"Error occurred: {e}")
return None
finally:
print("Temporary files deleted.")
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/multimodal-art-projection/YuE">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://map-yue.github.io">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
</div>
""")
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(label="Genre")
lyrics_txt = gr.Textbox(label="Lyrics")
with gr.Column():
if IS_SHARED_UI:
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Max New Tokens", info="100 tokens equals 1 second of music", minimum=100, maximum="3000", step=100, value=500, interactive=True)
else:
num_segments = gr.Number(label="Number of Song Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Max New Tokens", minimum=500, maximum="24000", step=500, value=3000, interactive=True)
submit_btn = gr.Button("Submit")
music_out = gr.Audio(label="Audio Result")
gr.Examples(
examples = [
[
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
"""[verse]
In the quiet of the evening, shadows start to fall
Whispers of the night wind echo through the hall
Lost within the silence, I hear your gentle voice
Guiding me back homeward, making my heart rejoice
[chorus]
Don't let this moment fade, hold me close tonight
With you here beside me, everything's alright
Can't imagine life alone, don't want to let you go
Stay with me forever, let our love just flow
"""
],
[
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
"""[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands
[chorus]
This is my life, and I'm aiming for the top
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
"""
]
],
inputs = [genre_txt, lyrics_txt],
outputs = [music_out],
cache_examples = False,
fn=infer
)
submit_btn.click(
fn = infer,
inputs = [genre_txt, lyrics_txt, num_segments, max_new_tokens],
outputs = [music_out]
)
# --- Initialization and Execution ---
if __name__ == "__main__":
# Install Flash Attention
install_flash_attn()
# Download xcodec mini infer
download_xcodec_model(XCODEC_FOLDER)
# Change to inference working directory
change_working_directory(".")
demo.queue().launch(show_api=False, show_error=True)