File size: 19,706 Bytes
6c02161
b2d8a8c
59e8f28
b2d8a8c
 
6df3b9e
0df1f1c
 
59e8f28
 
 
 
 
 
 
 
 
 
 
 
 
b1860c5
b2d8a8c
59e8f28
 
 
 
 
 
b2d8a8c
59e8f28
b2d8a8c
59e8f28
b2d8a8c
 
 
75f341f
 
 
59e8f28
b2d8a8c
 
 
 
 
98d025d
59e8f28
 
 
 
 
 
 
98d025d
59e8f28
 
 
 
 
98d025d
 
59e8f28
 
 
 
 
 
 
 
22e7225
 
59e8f28
 
 
 
22e7225
 
 
 
 
 
 
 
 
 
59e8f28
 
22e7225
59e8f28
 
 
22e7225
 
 
59e8f28
22e7225
 
59e8f28
 
22e7225
 
 
59e8f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22e7225
59e8f28
 
 
 
 
 
 
 
 
 
22e7225
59e8f28
 
 
 
725074b
59e8f28
 
 
b8a38aa
59e8f28
b1860c5
22e7225
59e8f28
 
 
 
22e7225
 
 
 
 
 
 
 
59e8f28
22e7225
 
 
 
 
 
 
 
 
 
 
 
 
 
59e8f28
22e7225
 
 
 
 
 
 
 
59e8f28
1438fcb
2d88b37
725074b
 
 
 
 
 
 
 
 
 
 
22e7225
59e8f28
725074b
 
 
 
 
 
 
 
22e7225
 
725074b
 
 
 
 
 
 
22e7225
725074b
 
 
 
 
 
 
 
 
22e7225
725074b
 
22e7225
725074b
 
 
 
59e8f28
22e7225
 
 
 
725074b
22e7225
 
725074b
 
 
 
b8a38aa
725074b
59e8f28
725074b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22e7225
725074b
 
 
 
 
 
 
 
 
 
 
22e7225
 
725074b
 
22e7225
 
725074b
22e7225
 
59e8f28
 
22e7225
59e8f28
725074b
 
59e8f28
725074b
22e7225
725074b
 
 
22e7225
725074b
 
b8a38aa
725074b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0695bb5
725074b
59e8f28
725074b
22e7225
59e8f28
 
 
 
 
 
 
22e7225
 
59e8f28
 
 
 
 
 
 
 
 
 
 
 
 
22e7225
 
725074b
22e7225
 
b2d8a8c
 
725074b
 
 
 
 
 
22e7225
725074b
 
 
 
 
 
 
 
 
 
 
 
22e7225
725074b
59e8f28
725074b
59e8f28
725074b
 
 
 
 
 
 
 
 
 
 
b2d8a8c
 
 
 
 
 
 
 
 
725074b
 
 
 
 
 
b2d8a8c
 
 
725074b
 
 
 
 
b8a38aa
725074b
 
 
 
 
 
 
22e7225
725074b
 
 
22e7225
725074b
22e7225
725074b
22e7225
725074b
 
 
59e8f28
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import torch
from huggingface_hub import snapshot_download
import uuid
import time
import copy
from collections import Counter
import re
import numpy as np
import torchaudio
import soundfile as sf
from torchaudio.transforms import Resample
from einops import rearrange
from tqdm import tqdm
from omegaconf import OmegaConf
import spaces

# --- Constants and Environment Setup ---
IS_SHARED_UI = "innova-ai/YuE-music-generator-demo" in os.environ.get('SPACE_ID', '')
OUTPUT_DIR = "./output"
XCODEC_FOLDER = "./xcodec_mini_infer"
MM_TOKENIZER_PATH = "./mm_tokenizer_v0.2_hf/tokenizer.model"
STAGE1_MODEL_NAME = "m-a-p/YuE-s1-7B-anneal-en-cot"

# --- Utility Functions ---
def install_flash_attn():
    """Installs flash-attn using pip."""
    try:
        print("Installing flash-attn...")
        subprocess.run(
            "pip install flash-attn --no-build-isolation",
            env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
            shell=True,
            check=True  # Raise an exception if the command fails
        )
        print("flash-attn installed successfully!")
    except subprocess.CalledProcessError as e:
        print(f"Failed to install flash-attn: {e}")
        exit(1)

def download_xcodec_model(folder_path):
  """Downloads xcodec model from huggingface hub."""
  if not os.path.exists(folder_path):
      os.makedirs(folder_path, exist_ok=True)
      print(f"Folder created at: {folder_path}")
  else:
      print(f"Folder already exists at: {folder_path}")

  snapshot_download(
      repo_id = "m-a-p/xcodec_mini_infer",
      local_dir = folder_path
  )
  print(f"Downloaded xcodec model to {folder_path}")


def change_working_directory(directory):
    """Changes the working directory."""
    try:
        os.chdir(directory)
        print(f"Changed working directory to: {os.getcwd()}")
    except FileNotFoundError:
        print(f"Directory not found: {directory}")
        exit(1)

def empty_output_folder(output_dir):
    """Clears the output directory."""
    if not os.path.exists(output_dir):
        return
    for file in os.listdir(output_dir):
        file_path = os.path.join(output_dir, file)
        try:
            if os.path.isdir(file_path):
                shutil.rmtree(file_path)
            else:
                os.remove(file_path)
        except Exception as e:
            print(f"Error deleting file {file_path}: {e}")

def create_temp_file(content, prefix, suffix=".txt"):
    """Creates a temporary file with given content."""
    content = content.strip() + "\n\n"
    content = content.replace("\r\n", "\n").replace("\r", "\n")
    with tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix) as temp_file:
        temp_file.write(content)
        temp_file_name = temp_file.name
    print(f"\nContent written to {prefix}{suffix}:")
    print(content)
    print("---")
    return temp_file_name

def get_last_mp3_file(output_dir):
    """Returns the path to the most recently modified .mp3 file in the directory, or None if none exists."""
    mp3_files = [os.path.join(output_dir, file) for file in os.listdir(output_dir) if file.endswith('.mp3')]
    if not mp3_files:
        print("No .mp3 files found in the output folder.")
        return None
    return max(mp3_files, key=os.path.getmtime)

def load_audio_mono(filepath, sampling_rate=16000):
    """Loads an audio file and converts it to mono at the desired sample rate."""
    audio, sr = torchaudio.load(filepath)
    audio = torch.mean(audio, dim=0, keepdim=True)  # Convert to mono
    if sr != sampling_rate:
        resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
        audio = resampler(audio)
    return audio

def split_lyrics(lyrics: str):
    """Splits lyrics into segments based on the [section] tags."""
    pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
    segments = re.findall(pattern, lyrics, re.DOTALL)
    return [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]

def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
    """Saves a torch audio tensor to a file."""
    os.makedirs(os.path.dirname(path), exist_ok=True)
    limit = 0.99
    max_val = wav.abs().max()
    wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
    torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)

# --- Model Initialization ---
def initialize_models(device):
    """Initializes and loads all required models."""
    print(f"Using device: {device}")
    # Load Stage 1 Model
    stage1_model = AutoModelForCausalLM.from_pretrained(
        STAGE1_MODEL_NAME,
        torch_dtype=torch.float16,
        attn_implementation="flash_attention_2",
    ).to(device).eval()

    # Load Tokenizer
    mmtokenizer = _MMSentencePieceTokenizer(MM_TOKENIZER_PATH)

     # Load Codec Model
    sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
    sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
    from codecmanipulator import CodecManipulator
    from models.soundstream_hubert_new import SoundStream

    codectool = CodecManipulator("xcodec", 0, 1)
    basic_model_config=os.path.join(XCODEC_FOLDER, "final_ckpt", "config.yaml")
    resume_path=os.path.join(XCODEC_FOLDER, "final_ckpt", "ckpt_00360000.pth")
    model_config = OmegaConf.load(basic_model_config)
    codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
    parameter_dict = torch.load(resume_path, map_location='cpu')
    codec_model.load_state_dict(parameter_dict['codec_model'])
    codec_model.to(device).eval()
    
    return stage1_model, mmtokenizer, codectool, codec_model

# --- Logits Processor ---
class BlockTokenRangeProcessor(LogitsProcessor):
    def __init__(self, start_id, end_id):
        self.blocked_token_ids = list(range(start_id, end_id))

    def __call__(self, input_ids, scores):
        scores[:, self.blocked_token_ids] = -float("inf")
        return scores

# --- Music Generation Core Function ---
@spaces.GPU(duration=120)
def generate_music(
    stage1_model,
    mmtokenizer,
    codectool,
    codec_model,
    max_new_tokens=3000,
    run_n_segments=2,
    genre_txt=None,
    lyrics_txt=None,
    use_audio_prompt=False,
    audio_prompt_path="",
    prompt_start_time=0.0,
    prompt_end_time=30.0,
    output_dir=OUTPUT_DIR,
    keep_intermediate=False,
    disable_offload_model=False,
    cuda_idx=0,
    rescale=False,
):
    if use_audio_prompt and not audio_prompt_path:
        raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
    
    stage1_output_dir = os.path.join(output_dir, f"stage1")
    os.makedirs(stage1_output_dir, exist_ok=True)

    device = torch.device(f"cuda:{cuda_idx}" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")

    # Load Model Parameters for decoding
    class BlockTokenRangeProcessor(LogitsProcessor):
        def __init__(self, start_id, end_id):
            self.blocked_token_ids = list(range(start_id, end_id))

        def __call__(self, input_ids, scores):
            scores[:, self.blocked_token_ids] = -float("inf")
            return scores

    # Split lyrics
    genres = genre_txt.strip()
    lyrics = split_lyrics(lyrics_txt+"\n")
    full_lyrics = "\n".join(lyrics)
    prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
    prompt_texts += lyrics
    random_id = uuid.uuid4()
    output_seq = None
    top_p = 0.93
    temperature = 1.0
    repetition_penalty = 1.2
    start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
    end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
    raw_output = None
    run_n_segments = min(run_n_segments+1, len(lyrics))
    stage1_output_set = []

    print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
    for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
        section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
        guidance_scale = 1.5 if i <=1 else 1.2
        if i==0:
            continue
        if i==1:
            if use_audio_prompt:
                audio_prompt = load_audio_mono(audio_prompt_path)
                audio_prompt.unsqueeze_(0)
                with torch.no_grad():
                    raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
                raw_codes = raw_codes.transpose(0, 1)
                raw_codes = raw_codes.cpu().numpy().astype(np.int16)
                # Format audio prompt
                code_ids = codectool.npy2ids(raw_codes[0])
                audio_prompt_codec = code_ids[int(prompt_start_time *50): int(prompt_end_time *50)] # 50 is tps of xcodec
                audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
                sentence_ids = mmtokenizer.tokenize("[start_of_reference]") +  audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
                head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
            else:
                head_id = mmtokenizer.tokenize(prompt_texts[0])
            prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
        else:
            prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids

        prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device) 
        input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids
        # Use window slicing in case output sequence exceeds the context of model
        max_context = 16384-max_new_tokens-1
        if input_ids.shape[-1] > max_context:
            print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
            input_ids = input_ids[:, -(max_context):]
        with torch.no_grad():
            output_seq = stage1_model.generate(
                input_ids=input_ids, 
                max_new_tokens=max_new_tokens, 
                min_new_tokens=100, 
                do_sample=True, 
                top_p=top_p,
                temperature=temperature, 
                repetition_penalty=repetition_penalty, 
                eos_token_id=mmtokenizer.eoa,
                pad_token_id=mmtokenizer.eoa,
                logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
                guidance_scale=guidance_scale,
                )
            if output_seq[0][-1].item() != mmtokenizer.eoa:
                tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(stage1_model.device)
                output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
        if i > 1:
            raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
        else:
            raw_output = output_seq
        print(len(raw_output))

    # save raw output and check sanity
    ids = raw_output[0].cpu().numpy()
    soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
    eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
    if len(soa_idx)!=len(eoa_idx):
        raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')

    vocals = []
    instrumentals = []
    range_begin = 1 if use_audio_prompt else 0
    for i in range(range_begin, len(soa_idx)):
        codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
        if codec_ids[0] == 32016:
            codec_ids = codec_ids[1:]
        codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
        vocals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[0])
        vocals.append(vocals_ids)
        instrumentals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[1])
        instrumentals.append(instrumentals_ids)
    vocals = np.concatenate(vocals, axis=1)
    instrumentals = np.concatenate(instrumentals, axis=1)
    vocal_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_vocal_{random_id}".replace('.', '@')+'.npy')
    inst_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_instrumental_{random_id}".replace('.', '@')+'.npy')
    np.save(vocal_save_path, vocals)
    np.save(inst_save_path, instrumentals)
    stage1_output_set.append(vocal_save_path)
    stage1_output_set.append(inst_save_path)

    # offload model
    if not disable_offload_model:
        stage1_model.cpu()
        del stage1_model
        torch.cuda.empty_cache()
    
    print("Converting to Audio...")
    # convert audio tokens to audio
    
    # reconstruct tracks
    recons_output_dir = os.path.join(output_dir, "recons")
    recons_mix_dir = os.path.join(recons_output_dir, 'mix')
    os.makedirs(recons_mix_dir, exist_ok=True)
    tracks = []
    for npy in stage1_output_set:
        codec_result = np.load(npy)
        decodec_rlt=[]
        with torch.no_grad():
            decoded_waveform = codec_model.decode(torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device))
        decoded_waveform = decoded_waveform.cpu().squeeze(0)
        decodec_rlt.append(torch.as_tensor(decoded_waveform))
        decodec_rlt = torch.cat(decodec_rlt, dim=-1)
        save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
        tracks.append(save_path)
        save_audio(decodec_rlt, save_path, 16000)
    # mix tracks
    for inst_path in tracks:
        try:
            if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
                and 'instrumental' in inst_path:
                # find pair
                vocal_path = inst_path.replace('instrumental', 'vocal')
                if not os.path.exists(vocal_path):
                    continue
                # mix
                recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
                vocal_stem, sr = sf.read(inst_path)
                instrumental_stem, _ = sf.read(vocal_path)
                mix_stem = (vocal_stem + instrumental_stem) / 1
                sf.write(recons_mix, mix_stem, sr)
        except Exception as e:
            print(e)
    return recons_mix

# --- Gradio Interface ---
@spaces.GPU(duration=120)
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=200):
    """Main function that runs model and returns output audio."""
    os.makedirs(OUTPUT_DIR, exist_ok=True)
    print(f"Output folder ensured at: {OUTPUT_DIR}")
    empty_output_folder(OUTPUT_DIR)
    
    device = torch.device(f"cuda" if torch.cuda.is_available() else "cpu")
    stage1_model, mmtokenizer, codectool, codec_model = initialize_models(device)
    
    try:
         music = generate_music(
            stage1_model=stage1_model, 
            mmtokenizer=mmtokenizer,
            codectool=codectool,
            codec_model=codec_model,
            genre_txt=genre_txt_content, 
            lyrics_txt=lyrics_txt_content, 
            run_n_segments=num_segments, 
            output_dir=OUTPUT_DIR, 
            cuda_idx=0, 
            max_new_tokens=max_new_tokens
        )
         return music
    except subprocess.CalledProcessError as e:
        print(f"Error occurred: {e}")
        return None
    finally:
        print("Temporary files deleted.")

with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href="https://github.com/multimodal-art-projection/YuE">
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a> 
            <a href="https://map-yue.github.io">
                <img src='https://img.shields.io/badge/Project-Page-green'>
            </a>
            <a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
                <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
            </a>
        </div>
        """)
        with gr.Row():
            with gr.Column():
                genre_txt = gr.Textbox(label="Genre")
                lyrics_txt = gr.Textbox(label="Lyrics")
                
            with gr.Column():
                if IS_SHARED_UI:
                    num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
                    max_new_tokens = gr.Slider(label="Max New Tokens", info="100 tokens equals 1 second of music", minimum=100, maximum="3000", step=100, value=500, interactive=True) 
                else:
                    num_segments = gr.Number(label="Number of Song Segments", value=2, interactive=True)
                    max_new_tokens = gr.Slider(label="Max New Tokens", minimum=500, maximum="24000", step=500, value=3000, interactive=True)
                submit_btn = gr.Button("Submit")
                music_out = gr.Audio(label="Audio Result")

        gr.Examples(
            examples = [
                [
                    "female blues airy vocal bright vocal piano sad romantic guitar jazz",
                    """[verse]
In the quiet of the evening, shadows start to fall
Whispers of the night wind echo through the hall
Lost within the silence, I hear your gentle voice
Guiding me back homeward, making my heart rejoice

[chorus]
Don't let this moment fade, hold me close tonight
With you here beside me, everything's alright
Can't imagine life alone, don't want to let you go
Stay with me forever, let our love just flow
                    """
                ],
                [
                    "rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
                    """[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands

[chorus]
This is my life, and I'm aiming for the top
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
                    """
                ]
            ], 
             inputs = [genre_txt, lyrics_txt],
            outputs = [music_out],
            cache_examples = False,
            fn=infer
        )
    
    submit_btn.click(
        fn = infer, 
        inputs = [genre_txt, lyrics_txt, num_segments, max_new_tokens],
        outputs = [music_out]
    )

# --- Initialization and Execution ---
if __name__ == "__main__":
    # Install Flash Attention
    install_flash_attn()
    # Download xcodec mini infer
    download_xcodec_model(XCODEC_FOLDER)
    # Change to inference working directory
    change_working_directory(".")

    demo.queue().launch(show_api=False, show_error=True)