modified: app.py
Browse files
app.py
CHANGED
@@ -1,151 +1,175 @@
|
|
1 |
import gradio as gr
|
2 |
import subprocess
|
3 |
-
import os
|
4 |
import shutil
|
5 |
import tempfile
|
6 |
import spaces
|
7 |
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
|
8 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
def install_flash_attn():
|
|
|
14 |
try:
|
15 |
print("Installing flash-attn...")
|
16 |
-
# Install flash attention
|
17 |
subprocess.run(
|
18 |
"pip install flash-attn --no-build-isolation",
|
19 |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
20 |
shell=True,
|
|
|
21 |
)
|
22 |
print("flash-attn installed successfully!")
|
23 |
except subprocess.CalledProcessError as e:
|
24 |
print(f"Failed to install flash-attn: {e}")
|
25 |
exit(1)
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
print(f"Folder already exists at: {folder_path}")
|
41 |
|
42 |
-
snapshot_download(
|
43 |
-
repo_id = "m-a-p/xcodec_mini_infer",
|
44 |
-
local_dir = "./xcodec_mini_infer"
|
45 |
-
)
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
try:
|
50 |
-
|
51 |
-
|
52 |
-
except FileNotFoundError:
|
53 |
-
|
54 |
-
|
55 |
|
56 |
def empty_output_folder(output_dir):
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
for file in files:
|
62 |
file_path = os.path.join(output_dir, file)
|
63 |
try:
|
64 |
if os.path.isdir(file_path):
|
65 |
-
# If it's a directory, remove it recursively
|
66 |
shutil.rmtree(file_path)
|
67 |
else:
|
68 |
-
# If it's a file, delete it
|
69 |
os.remove(file_path)
|
70 |
except Exception as e:
|
71 |
print(f"Error deleting file {file_path}: {e}")
|
72 |
|
73 |
-
# Function to create a temporary file with string content
|
74 |
def create_temp_file(content, prefix, suffix=".txt"):
|
75 |
-
|
76 |
-
|
77 |
-
content = content.strip() + "\n\n" # Add extra newline at end
|
78 |
content = content.replace("\r\n", "\n").replace("\r", "\n")
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
# Debug: Print file contents
|
83 |
print(f"\nContent written to {prefix}{suffix}:")
|
84 |
print(content)
|
85 |
print("---")
|
86 |
-
|
87 |
-
return temp_file.name
|
88 |
|
89 |
def get_last_mp3_file(output_dir):
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
# Filter only .mp3 files
|
94 |
-
mp3_files = [file for file in files if file.endswith('.mp3')]
|
95 |
-
|
96 |
if not mp3_files:
|
97 |
print("No .mp3 files found in the output folder.")
|
98 |
return None
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
"
|
113 |
-
|
114 |
-
|
115 |
-
)
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
import argparse
|
124 |
-
import torch
|
125 |
-
import numpy as np
|
126 |
-
import json
|
127 |
-
from omegaconf import OmegaConf
|
128 |
-
import torchaudio
|
129 |
-
from torchaudio.transforms import Resample
|
130 |
-
import soundfile as sf
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
from codecmanipulator import CodecManipulator
|
136 |
-
from mmtokenizer import _MMSentencePieceTokenizer
|
137 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
|
138 |
-
import glob
|
139 |
-
import time
|
140 |
-
import copy
|
141 |
-
from collections import Counter
|
142 |
-
from models.soundstream_hubert_new import SoundStream
|
143 |
-
from vocoder import build_codec_model, process_audio
|
144 |
-
from post_process_audio import replace_low_freq_with_energy_matched
|
145 |
-
import re
|
146 |
|
|
|
147 |
def generate_music(
|
148 |
-
stage1_model
|
|
|
|
|
|
|
149 |
max_new_tokens=3000,
|
150 |
run_n_segments=2,
|
151 |
genre_txt=None,
|
@@ -154,42 +178,22 @@ def generate_music(
|
|
154 |
audio_prompt_path="",
|
155 |
prompt_start_time=0.0,
|
156 |
prompt_end_time=30.0,
|
157 |
-
output_dir=
|
158 |
keep_intermediate=False,
|
159 |
disable_offload_model=False,
|
160 |
cuda_idx=0,
|
161 |
-
basic_model_config='./xcodec_mini_infer/final_ckpt/config.yaml',
|
162 |
-
resume_path='./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth',
|
163 |
-
config_path='./xcodec_mini_infer/decoders/config.yaml',
|
164 |
-
vocal_decoder_path='./xcodec_mini_infer/decoders/decoder_131000.pth',
|
165 |
-
inst_decoder_path='./xcodec_mini_infer/decoders/decoder_151000.pth',
|
166 |
rescale=False,
|
167 |
):
|
168 |
if use_audio_prompt and not audio_prompt_path:
|
169 |
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
|
170 |
|
171 |
-
model = stage1_model
|
172 |
-
cuda_idx = cuda_idx
|
173 |
-
max_new_tokens = max_new_tokens
|
174 |
stage1_output_dir = os.path.join(output_dir, f"stage1")
|
175 |
os.makedirs(stage1_output_dir, exist_ok=True)
|
176 |
|
177 |
-
# load tokenizer and model
|
178 |
device = torch.device(f"cuda:{cuda_idx}" if torch.cuda.is_available() else "cpu")
|
179 |
-
|
180 |
-
# Now you can use `device` to move your tensors or models to the GPU (if available)
|
181 |
print(f"Using device: {device}")
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
codectool = CodecManipulator("xcodec", 0, 1)
|
186 |
-
model_config = OmegaConf.load(basic_model_config)
|
187 |
-
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
|
188 |
-
parameter_dict = torch.load(resume_path, map_location='cpu')
|
189 |
-
codec_model.load_state_dict(parameter_dict['codec_model'])
|
190 |
-
codec_model.to(device)
|
191 |
-
codec_model.eval()
|
192 |
-
|
193 |
class BlockTokenRangeProcessor(LogitsProcessor):
|
194 |
def __init__(self, start_id, end_id):
|
195 |
self.blocked_token_ids = list(range(start_id, end_id))
|
@@ -198,56 +202,24 @@ def generate_music(
|
|
198 |
scores[:, self.blocked_token_ids] = -float("inf")
|
199 |
return scores
|
200 |
|
201 |
-
|
202 |
-
audio, sr = torchaudio.load(filepath)
|
203 |
-
# Convert to mono
|
204 |
-
audio = torch.mean(audio, dim=0, keepdim=True)
|
205 |
-
# Resample if needed
|
206 |
-
if sr != sampling_rate:
|
207 |
-
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
|
208 |
-
audio = resampler(audio)
|
209 |
-
return audio
|
210 |
-
|
211 |
-
def split_lyrics(lyrics: str):
|
212 |
-
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
|
213 |
-
segments = re.findall(pattern, lyrics, re.DOTALL)
|
214 |
-
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
|
215 |
-
return structured_lyrics
|
216 |
-
|
217 |
-
# Call the function and print the result
|
218 |
-
stage1_output_set = []
|
219 |
-
# Tips:
|
220 |
-
# genre tags support instrumental,genre,mood,vocal timbr and vocal gender
|
221 |
-
# # all kinds of tags are needed
|
222 |
-
# with open(genre_txt) as f:
|
223 |
-
# genres = f.read().strip()
|
224 |
-
# with open(lyrics_txt) as f:
|
225 |
-
# lyrics = split_lyrics(f.read())
|
226 |
genres = genre_txt.strip()
|
227 |
lyrics = split_lyrics(lyrics_txt+"\n")
|
228 |
-
# intruction
|
229 |
full_lyrics = "\n".join(lyrics)
|
230 |
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
|
231 |
prompt_texts += lyrics
|
232 |
-
|
233 |
-
|
234 |
random_id = uuid.uuid4()
|
235 |
output_seq = None
|
236 |
-
# Here is suggested decoding config
|
237 |
top_p = 0.93
|
238 |
temperature = 1.0
|
239 |
repetition_penalty = 1.2
|
240 |
-
# special tokens
|
241 |
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
|
242 |
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
|
243 |
-
|
244 |
raw_output = None
|
245 |
-
|
246 |
-
# Format text prompt
|
247 |
run_n_segments = min(run_n_segments+1, len(lyrics))
|
|
|
248 |
|
249 |
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
|
250 |
-
|
251 |
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
|
252 |
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
253 |
guidance_scale = 1.5 if i <=1 else 1.2
|
@@ -281,7 +253,7 @@ def generate_music(
|
|
281 |
print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
|
282 |
input_ids = input_ids[:, -(max_context):]
|
283 |
with torch.no_grad():
|
284 |
-
output_seq =
|
285 |
input_ids=input_ids,
|
286 |
max_new_tokens=max_new_tokens,
|
287 |
min_new_tokens=100,
|
@@ -295,7 +267,7 @@ def generate_music(
|
|
295 |
guidance_scale=guidance_scale,
|
296 |
)
|
297 |
if output_seq[0][-1].item() != mmtokenizer.eoa:
|
298 |
-
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(
|
299 |
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
|
300 |
if i > 1:
|
301 |
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
|
@@ -331,24 +303,15 @@ def generate_music(
|
|
331 |
stage1_output_set.append(vocal_save_path)
|
332 |
stage1_output_set.append(inst_save_path)
|
333 |
|
334 |
-
|
335 |
# offload model
|
336 |
if not disable_offload_model:
|
337 |
-
|
338 |
-
del
|
339 |
torch.cuda.empty_cache()
|
340 |
-
|
341 |
print("Converting to Audio...")
|
342 |
-
|
343 |
# convert audio tokens to audio
|
344 |
-
|
345 |
-
folder_path = os.path.dirname(path)
|
346 |
-
if not os.path.exists(folder_path):
|
347 |
-
os.makedirs(folder_path)
|
348 |
-
limit = 0.99
|
349 |
-
max_val = wav.abs().max()
|
350 |
-
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
|
351 |
-
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
|
352 |
# reconstruct tracks
|
353 |
recons_output_dir = os.path.join(output_dir, "recons")
|
354 |
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
|
@@ -384,80 +347,37 @@ def generate_music(
|
|
384 |
print(e)
|
385 |
return recons_mix
|
386 |
|
387 |
-
|
388 |
-
# vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path)
|
389 |
-
# vocoder_output_dir = os.path.join(output_dir, 'vocoder')
|
390 |
-
# vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems')
|
391 |
-
# vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix')
|
392 |
-
# os.makedirs(vocoder_mix_dir, exist_ok=True)
|
393 |
-
# os.makedirs(vocoder_stems_dir, exist_ok=True)
|
394 |
-
# instrumental_output = None
|
395 |
-
# vocal_output = None
|
396 |
-
# for npy in stage1_output_set:
|
397 |
-
# if 'instrumental' in npy:
|
398 |
-
# # Process instrumental
|
399 |
-
# instrumental_output = process_audio(
|
400 |
-
# npy,
|
401 |
-
# os.path.join(vocoder_stems_dir, 'instrumental.mp3'),
|
402 |
-
# rescale,
|
403 |
-
# argparse.Namespace(**locals()), # Convert local variables to argparse.Namespace
|
404 |
-
# inst_decoder,
|
405 |
-
# codec_model
|
406 |
-
# )
|
407 |
-
# else:
|
408 |
-
# # Process vocal
|
409 |
-
# vocal_output = process_audio(
|
410 |
-
# npy,
|
411 |
-
# os.path.join(vocoder_stems_dir, 'vocal.mp3'),
|
412 |
-
# rescale,
|
413 |
-
# argparse.Namespace(**locals()), # Convert local variables to argparse.Namespace
|
414 |
-
# vocal_decoder,
|
415 |
-
# codec_model
|
416 |
-
# )
|
417 |
-
# # mix tracks
|
418 |
-
# try:
|
419 |
-
# mix_output = instrumental_output + vocal_output
|
420 |
-
# vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix))
|
421 |
-
# save_audio(mix_output, vocoder_mix, 44100, rescale)
|
422 |
-
# print(f"Created mix: {vocoder_mix}")
|
423 |
-
# except RuntimeError as e:
|
424 |
-
# print(e)
|
425 |
-
# print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}")
|
426 |
-
|
427 |
-
# # Post process
|
428 |
-
# replace_low_freq_with_energy_matched(
|
429 |
-
# a_file=recons_mix, # 16kHz
|
430 |
-
# b_file=vocoder_mix, # 48kHz
|
431 |
-
# c_file=os.path.join(output_dir, os.path.basename(recons_mix)),
|
432 |
-
# cutoff_freq=5500.0
|
433 |
-
# )
|
434 |
-
# print("All process Done")
|
435 |
-
|
436 |
-
|
437 |
@spaces.GPU(duration=120)
|
438 |
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=200):
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
|
447 |
-
# Execute the command
|
448 |
try:
|
449 |
-
|
450 |
-
|
451 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
452 |
except subprocess.CalledProcessError as e:
|
453 |
print(f"Error occurred: {e}")
|
454 |
return None
|
455 |
finally:
|
456 |
-
# Clean up temporary files
|
457 |
print("Temporary files deleted.")
|
458 |
|
459 |
-
# Gradio
|
460 |
-
|
461 |
with gr.Blocks() as demo:
|
462 |
with gr.Column():
|
463 |
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
|
@@ -480,9 +400,9 @@ with gr.Blocks() as demo:
|
|
480 |
lyrics_txt = gr.Textbox(label="Lyrics")
|
481 |
|
482 |
with gr.Column():
|
483 |
-
if
|
484 |
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
|
485 |
-
max_new_tokens = gr.Slider(label="Max New Tokens", info="100 tokens equals 1 second
|
486 |
else:
|
487 |
num_segments = gr.Number(label="Number of Song Segments", value=2, interactive=True)
|
488 |
max_new_tokens = gr.Slider(label="Max New Tokens", minimum=500, maximum="24000", step=500, value=3000, interactive=True)
|
@@ -529,7 +449,6 @@ Living out my dreams with this mic and a deal
|
|
529 |
inputs = [genre_txt, lyrics_txt],
|
530 |
outputs = [music_out],
|
531 |
cache_examples = False,
|
532 |
-
# cache_mode="lazy",
|
533 |
fn=infer
|
534 |
)
|
535 |
|
@@ -538,4 +457,14 @@ Living out my dreams with this mic and a deal
|
|
538 |
inputs = [genre_txt, lyrics_txt, num_segments, max_new_tokens],
|
539 |
outputs = [music_out]
|
540 |
)
|
541 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import subprocess
|
3 |
+
import os
|
4 |
import shutil
|
5 |
import tempfile
|
6 |
import spaces
|
7 |
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
|
8 |
import torch
|
9 |
+
from huggingface_hub import snapshot_download
|
10 |
+
import uuid
|
11 |
+
import time
|
12 |
+
import copy
|
13 |
+
from collections import Counter
|
14 |
+
import re
|
15 |
+
import numpy as np
|
16 |
+
import torchaudio
|
17 |
+
import soundfile as sf
|
18 |
+
from torchaudio.transforms import Resample
|
19 |
+
from einops import rearrange
|
20 |
+
from tqdm import tqdm
|
21 |
+
from omegaconf import OmegaConf
|
22 |
|
23 |
+
# --- Constants and Environment Setup ---
|
24 |
+
IS_SHARED_UI = "innova-ai/YuE-music-generator-demo" in os.environ.get('SPACE_ID', '')
|
25 |
+
OUTPUT_DIR = "./output"
|
26 |
+
XCODEC_FOLDER = "./xcodec_mini_infer"
|
27 |
+
MM_TOKENIZER_PATH = "./mm_tokenizer_v0.2_hf/tokenizer.model"
|
28 |
+
STAGE1_MODEL_NAME = "m-a-p/YuE-s1-7B-anneal-en-cot"
|
29 |
|
30 |
+
# --- Utility Functions ---
|
31 |
def install_flash_attn():
|
32 |
+
"""Installs flash-attn using pip."""
|
33 |
try:
|
34 |
print("Installing flash-attn...")
|
|
|
35 |
subprocess.run(
|
36 |
"pip install flash-attn --no-build-isolation",
|
37 |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
38 |
shell=True,
|
39 |
+
check=True # Raise an exception if the command fails
|
40 |
)
|
41 |
print("flash-attn installed successfully!")
|
42 |
except subprocess.CalledProcessError as e:
|
43 |
print(f"Failed to install flash-attn: {e}")
|
44 |
exit(1)
|
45 |
|
46 |
+
def download_xcodec_model(folder_path):
|
47 |
+
"""Downloads xcodec model from huggingface hub."""
|
48 |
+
if not os.path.exists(folder_path):
|
49 |
+
os.makedirs(folder_path, exist_ok=True)
|
50 |
+
print(f"Folder created at: {folder_path}")
|
51 |
+
else:
|
52 |
+
print(f"Folder already exists at: {folder_path}")
|
53 |
|
54 |
+
snapshot_download(
|
55 |
+
repo_id = "m-a-p/xcodec_mini_infer",
|
56 |
+
local_dir = folder_path
|
57 |
+
)
|
58 |
+
print(f"Downloaded xcodec model to {folder_path}")
|
|
|
59 |
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
def change_working_directory(directory):
|
62 |
+
"""Changes the working directory."""
|
63 |
+
try:
|
64 |
+
os.chdir(directory)
|
65 |
+
print(f"Changed working directory to: {os.getcwd()}")
|
66 |
+
except FileNotFoundError:
|
67 |
+
print(f"Directory not found: {directory}")
|
68 |
+
exit(1)
|
69 |
|
70 |
def empty_output_folder(output_dir):
|
71 |
+
"""Clears the output directory."""
|
72 |
+
if not os.path.exists(output_dir):
|
73 |
+
return
|
74 |
+
for file in os.listdir(output_dir):
|
|
|
75 |
file_path = os.path.join(output_dir, file)
|
76 |
try:
|
77 |
if os.path.isdir(file_path):
|
|
|
78 |
shutil.rmtree(file_path)
|
79 |
else:
|
|
|
80 |
os.remove(file_path)
|
81 |
except Exception as e:
|
82 |
print(f"Error deleting file {file_path}: {e}")
|
83 |
|
|
|
84 |
def create_temp_file(content, prefix, suffix=".txt"):
|
85 |
+
"""Creates a temporary file with given content."""
|
86 |
+
content = content.strip() + "\n\n"
|
|
|
87 |
content = content.replace("\r\n", "\n").replace("\r", "\n")
|
88 |
+
with tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix) as temp_file:
|
89 |
+
temp_file.write(content)
|
90 |
+
temp_file_name = temp_file.name
|
|
|
91 |
print(f"\nContent written to {prefix}{suffix}:")
|
92 |
print(content)
|
93 |
print("---")
|
94 |
+
return temp_file_name
|
|
|
95 |
|
96 |
def get_last_mp3_file(output_dir):
|
97 |
+
"""Returns the path to the most recently modified .mp3 file in the directory, or None if none exists."""
|
98 |
+
mp3_files = [os.path.join(output_dir, file) for file in os.listdir(output_dir) if file.endswith('.mp3')]
|
|
|
|
|
|
|
|
|
99 |
if not mp3_files:
|
100 |
print("No .mp3 files found in the output folder.")
|
101 |
return None
|
102 |
+
return max(mp3_files, key=os.path.getmtime)
|
103 |
+
|
104 |
+
def load_audio_mono(filepath, sampling_rate=16000):
|
105 |
+
"""Loads an audio file and converts it to mono at the desired sample rate."""
|
106 |
+
audio, sr = torchaudio.load(filepath)
|
107 |
+
audio = torch.mean(audio, dim=0, keepdim=True) # Convert to mono
|
108 |
+
if sr != sampling_rate:
|
109 |
+
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
|
110 |
+
audio = resampler(audio)
|
111 |
+
return audio
|
112 |
+
|
113 |
+
def split_lyrics(lyrics: str):
|
114 |
+
"""Splits lyrics into segments based on the [section] tags."""
|
115 |
+
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
|
116 |
+
segments = re.findall(pattern, lyrics, re.DOTALL)
|
117 |
+
return [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
|
118 |
+
|
119 |
+
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
|
120 |
+
"""Saves a torch audio tensor to a file."""
|
121 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
122 |
+
limit = 0.99
|
123 |
+
max_val = wav.abs().max()
|
124 |
+
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
|
125 |
+
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
|
126 |
+
|
127 |
+
# --- Model Initialization ---
|
128 |
+
def initialize_models(device):
|
129 |
+
"""Initializes and loads all required models."""
|
130 |
+
print(f"Using device: {device}")
|
131 |
+
# Load Stage 1 Model
|
132 |
+
stage1_model = AutoModelForCausalLM.from_pretrained(
|
133 |
+
STAGE1_MODEL_NAME,
|
134 |
+
torch_dtype=torch.float16,
|
135 |
+
attn_implementation="flash_attention_2",
|
136 |
+
).to(device).eval()
|
137 |
+
|
138 |
+
# Load Tokenizer
|
139 |
+
mmtokenizer = _MMSentencePieceTokenizer(MM_TOKENIZER_PATH)
|
140 |
+
|
141 |
+
# Load Codec Model
|
142 |
+
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
|
143 |
+
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
|
144 |
+
from codecmanipulator import CodecManipulator
|
145 |
+
from models.soundstream_hubert_new import SoundStream
|
146 |
|
147 |
+
codectool = CodecManipulator("xcodec", 0, 1)
|
148 |
+
basic_model_config=os.path.join(XCODEC_FOLDER, "final_ckpt", "config.yaml")
|
149 |
+
resume_path=os.path.join(XCODEC_FOLDER, "final_ckpt", "ckpt_00360000.pth")
|
150 |
+
model_config = OmegaConf.load(basic_model_config)
|
151 |
+
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
|
152 |
+
parameter_dict = torch.load(resume_path, map_location='cpu')
|
153 |
+
codec_model.load_state_dict(parameter_dict['codec_model'])
|
154 |
+
codec_model.to(device).eval()
|
155 |
+
|
156 |
+
return stage1_model, mmtokenizer, codectool, codec_model
|
157 |
|
158 |
+
# --- Logits Processor ---
|
159 |
+
class BlockTokenRangeProcessor(LogitsProcessor):
|
160 |
+
def __init__(self, start_id, end_id):
|
161 |
+
self.blocked_token_ids = list(range(start_id, end_id))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
+
def __call__(self, input_ids, scores):
|
164 |
+
scores[:, self.blocked_token_ids] = -float("inf")
|
165 |
+
return scores
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
+
# --- Music Generation Core Function ---
|
168 |
def generate_music(
|
169 |
+
stage1_model,
|
170 |
+
mmtokenizer,
|
171 |
+
codectool,
|
172 |
+
codec_model,
|
173 |
max_new_tokens=3000,
|
174 |
run_n_segments=2,
|
175 |
genre_txt=None,
|
|
|
178 |
audio_prompt_path="",
|
179 |
prompt_start_time=0.0,
|
180 |
prompt_end_time=30.0,
|
181 |
+
output_dir=OUTPUT_DIR,
|
182 |
keep_intermediate=False,
|
183 |
disable_offload_model=False,
|
184 |
cuda_idx=0,
|
|
|
|
|
|
|
|
|
|
|
185 |
rescale=False,
|
186 |
):
|
187 |
if use_audio_prompt and not audio_prompt_path:
|
188 |
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
|
189 |
|
|
|
|
|
|
|
190 |
stage1_output_dir = os.path.join(output_dir, f"stage1")
|
191 |
os.makedirs(stage1_output_dir, exist_ok=True)
|
192 |
|
|
|
193 |
device = torch.device(f"cuda:{cuda_idx}" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
194 |
print(f"Using device: {device}")
|
195 |
|
196 |
+
# Load Model Parameters for decoding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
class BlockTokenRangeProcessor(LogitsProcessor):
|
198 |
def __init__(self, start_id, end_id):
|
199 |
self.blocked_token_ids = list(range(start_id, end_id))
|
|
|
202 |
scores[:, self.blocked_token_ids] = -float("inf")
|
203 |
return scores
|
204 |
|
205 |
+
# Split lyrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
genres = genre_txt.strip()
|
207 |
lyrics = split_lyrics(lyrics_txt+"\n")
|
|
|
208 |
full_lyrics = "\n".join(lyrics)
|
209 |
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
|
210 |
prompt_texts += lyrics
|
|
|
|
|
211 |
random_id = uuid.uuid4()
|
212 |
output_seq = None
|
|
|
213 |
top_p = 0.93
|
214 |
temperature = 1.0
|
215 |
repetition_penalty = 1.2
|
|
|
216 |
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
|
217 |
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
|
|
|
218 |
raw_output = None
|
|
|
|
|
219 |
run_n_segments = min(run_n_segments+1, len(lyrics))
|
220 |
+
stage1_output_set = []
|
221 |
|
222 |
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
|
|
|
223 |
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
|
224 |
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
225 |
guidance_scale = 1.5 if i <=1 else 1.2
|
|
|
253 |
print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
|
254 |
input_ids = input_ids[:, -(max_context):]
|
255 |
with torch.no_grad():
|
256 |
+
output_seq = stage1_model.generate(
|
257 |
input_ids=input_ids,
|
258 |
max_new_tokens=max_new_tokens,
|
259 |
min_new_tokens=100,
|
|
|
267 |
guidance_scale=guidance_scale,
|
268 |
)
|
269 |
if output_seq[0][-1].item() != mmtokenizer.eoa:
|
270 |
+
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(stage1_model.device)
|
271 |
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
|
272 |
if i > 1:
|
273 |
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
|
|
|
303 |
stage1_output_set.append(vocal_save_path)
|
304 |
stage1_output_set.append(inst_save_path)
|
305 |
|
|
|
306 |
# offload model
|
307 |
if not disable_offload_model:
|
308 |
+
stage1_model.cpu()
|
309 |
+
del stage1_model
|
310 |
torch.cuda.empty_cache()
|
311 |
+
|
312 |
print("Converting to Audio...")
|
|
|
313 |
# convert audio tokens to audio
|
314 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
# reconstruct tracks
|
316 |
recons_output_dir = os.path.join(output_dir, "recons")
|
317 |
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
|
|
|
347 |
print(e)
|
348 |
return recons_mix
|
349 |
|
350 |
+
# --- Gradio Interface ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
@spaces.GPU(duration=120)
|
352 |
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=200):
|
353 |
+
"""Main function that runs model and returns output audio."""
|
354 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
355 |
+
print(f"Output folder ensured at: {OUTPUT_DIR}")
|
356 |
+
empty_output_folder(OUTPUT_DIR)
|
357 |
+
|
358 |
+
device = torch.device(f"cuda" if torch.cuda.is_available() else "cpu")
|
359 |
+
stage1_model, mmtokenizer, codectool, codec_model = initialize_models(device)
|
360 |
|
|
|
361 |
try:
|
362 |
+
music = generate_music(
|
363 |
+
stage1_model=stage1_model,
|
364 |
+
mmtokenizer=mmtokenizer,
|
365 |
+
codectool=codectool,
|
366 |
+
codec_model=codec_model,
|
367 |
+
genre_txt=genre_txt_content,
|
368 |
+
lyrics_txt=lyrics_txt_content,
|
369 |
+
run_n_segments=num_segments,
|
370 |
+
output_dir=OUTPUT_DIR,
|
371 |
+
cuda_idx=0,
|
372 |
+
max_new_tokens=max_new_tokens
|
373 |
+
)
|
374 |
+
return music
|
375 |
except subprocess.CalledProcessError as e:
|
376 |
print(f"Error occurred: {e}")
|
377 |
return None
|
378 |
finally:
|
|
|
379 |
print("Temporary files deleted.")
|
380 |
|
|
|
|
|
381 |
with gr.Blocks() as demo:
|
382 |
with gr.Column():
|
383 |
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
|
|
|
400 |
lyrics_txt = gr.Textbox(label="Lyrics")
|
401 |
|
402 |
with gr.Column():
|
403 |
+
if IS_SHARED_UI:
|
404 |
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
|
405 |
+
max_new_tokens = gr.Slider(label="Max New Tokens", info="100 tokens equals 1 second of music", minimum=100, maximum="3000", step=100, value=500, interactive=True)
|
406 |
else:
|
407 |
num_segments = gr.Number(label="Number of Song Segments", value=2, interactive=True)
|
408 |
max_new_tokens = gr.Slider(label="Max New Tokens", minimum=500, maximum="24000", step=500, value=3000, interactive=True)
|
|
|
449 |
inputs = [genre_txt, lyrics_txt],
|
450 |
outputs = [music_out],
|
451 |
cache_examples = False,
|
|
|
452 |
fn=infer
|
453 |
)
|
454 |
|
|
|
457 |
inputs = [genre_txt, lyrics_txt, num_segments, max_new_tokens],
|
458 |
outputs = [music_out]
|
459 |
)
|
460 |
+
|
461 |
+
# --- Initialization and Execution ---
|
462 |
+
if __name__ == "__main__":
|
463 |
+
# Install Flash Attention
|
464 |
+
install_flash_attn()
|
465 |
+
# Download xcodec mini infer
|
466 |
+
download_xcodec_model(XCODEC_FOLDER)
|
467 |
+
# Change to inference working directory
|
468 |
+
change_working_directory(".")
|
469 |
+
|
470 |
+
demo.queue().launch(show_api=False, show_error=True)
|