KingNish's picture
Update app.py
9df60ba verified
raw
history blame
19 kB
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import torch
from huggingface_hub import snapshot_download
import uuid
import time
from tqdm import tqdm
from einops import rearrange
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
from omegaconf import OmegaConf
import numpy as np
import re
import sys
from collections import Counter
# --- Constants and Setup ---
IS_SHARED_UI = "innova-ai/YuE-music-generator-demo" in os.environ.get('SPACE_ID', '')
OUTPUT_DIR = "./output"
XCODEC_MINI_INFER_DIR = "./xcodec_mini_infer"
MODEL_ID = "m-a-p/YuE-s1-7B-anneal-en-cot"
# Install flash-attn
def install_flash_attn():
try:
print("Installing flash-attn...")
# Install flash attention
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
check=True # Use check=True to raise an exception on failure
)
print("flash-attn installed successfully!")
except subprocess.CalledProcessError as e:
print(f"Failed to install flash-attn: {e}")
exit(1)
install_flash_attn()
# --- Utility Functions ---
def download_xcodec_resources():
"""Downloads xcodec inference files."""
if not os.path.exists(XCODEC_MINI_INFER_DIR):
os.makedirs(XCODEC_MINI_INFER_DIR, exist_ok=True)
print(f"Created folder at: {XCODEC_MINI_INFER_DIR}")
snapshot_download(repo_id="m-a-p/xcodec_mini_infer", local_dir=XCODEC_MINI_INFER_DIR)
else:
print(f"Folder already exists at: {XCODEC_MINI_INFER_DIR}")
download_xcodec_resources()
# Add xcodec paths
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
from models.soundstream_hubert_new import SoundStream
from vocoder import build_codec_model, process_audio
from post_process_audio import replace_low_freq_with_energy_matched
def empty_output_folder(output_dir):
"""Empties the output folder."""
for file in os.listdir(output_dir):
file_path = os.path.join(output_dir, file)
try:
if os.path.isdir(file_path):
shutil.rmtree(file_path)
else:
os.remove(file_path)
except Exception as e:
print(f"Error deleting file {file_path}: {e}")
def create_temp_file(content, prefix, suffix=".txt"):
"""Creates a temporary file with content."""
temp_file = tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix)
content = content.strip() + "\n\n"
content = content.replace("\r\n", "\n").replace("\r", "\n")
temp_file.write(content)
temp_file.close()
print(f"\nContent written to {prefix}{suffix}:\n{content}\n---")
return temp_file.name
def get_last_mp3_file(output_dir):
"""Gets the most recently modified MP3 file in a directory."""
mp3_files = [file for file in os.listdir(output_dir) if file.endswith('.mp3')]
if not mp3_files:
print("No .mp3 files found in the output folder.")
return None
mp3_files_with_path = [os.path.join(output_dir, file) for file in mp3_files]
mp3_files_with_path.sort(key=os.path.getmtime, reverse=True)
return mp3_files_with_path[0]
class BlockTokenRangeProcessor(LogitsProcessor):
def __init__(self, start_id, end_id):
self.blocked_token_ids = list(range(start_id, end_id))
def __call__(self, input_ids, scores):
scores[:, self.blocked_token_ids] = -float("inf")
return scores
def load_audio_mono(filepath, sampling_rate=16000):
"""Loads an audio file and converts to mono, optionally resamples."""
audio, sr = torchaudio.load(filepath)
audio = torch.mean(audio, dim=0, keepdim=True)
if sr != sampling_rate:
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
audio = resampler(audio)
return audio
def split_lyrics(lyrics: str):
"""Splits lyrics into segments based on bracketed headers."""
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
segments = re.findall(pattern, lyrics, re.DOTALL)
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
return structured_lyrics
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
"""Saves an audio tensor to disk."""
folder_path = os.path.dirname(path)
if not os.path.exists(folder_path):
os.makedirs(folder_path)
limit = 0.99
max_val = wav.abs().max()
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
# --- Music Generation Class ---
class MusicGenerator:
def __init__(self, device="cuda:0", basic_model_config=f'{XCODEC_MINI_INFER_DIR}/final_ckpt/config.yaml', resume_path=f'{XCODEC_MINI_INFER_DIR}/final_ckpt/ckpt_00360000.pth'):
self.device = torch.device(device if torch.cuda.is_available() else "cpu")
self.mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
self.codectool = CodecManipulator("xcodec", 0, 1)
model_config = OmegaConf.load(basic_model_config)
self.codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(self.device)
parameter_dict = torch.load(resume_path, map_location='cpu')
self.codec_model.load_state_dict(parameter_dict['codec_model'])
self.codec_model.to(self.device)
self.codec_model.eval()
# load stage1 model to GPU at initial time
self.stage1_model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
).to(self.device)
self.stage1_model.eval()
def generate(
self,
genre_txt=None,
lyrics_txt=None,
max_new_tokens=3000,
run_n_segments=2,
use_audio_prompt=False,
audio_prompt_path="",
prompt_start_time=0.0,
prompt_end_time=30.0,
output_dir=OUTPUT_DIR,
keep_intermediate=False,
disable_offload_model=False,
rescale=False
):
if use_audio_prompt and not audio_prompt_path:
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
stage1_output_dir = os.path.join(output_dir, f"stage1")
os.makedirs(stage1_output_dir, exist_ok=True)
stage1_output_set = []
genres = genre_txt.strip()
lyrics = split_lyrics(lyrics_txt + "\n")
full_lyrics = "\n".join(lyrics)
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
prompt_texts += lyrics
random_id = uuid.uuid4()
output_seq = None
top_p = 0.93
temperature = 1.0
repetition_penalty = 1.2
start_of_segment = self.mmtokenizer.tokenize('[start_of_segment]')
end_of_segment = self.mmtokenizer.tokenize('[end_of_segment]')
raw_output = None
run_n_segments = min(run_n_segments + 1, len(lyrics))
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
guidance_scale = 1.5 if i <= 1 else 1.2
if i == 0:
continue
if i == 1:
if use_audio_prompt:
audio_prompt = load_audio_mono(audio_prompt_path)
audio_prompt.unsqueeze_(0)
with torch.no_grad():
raw_codes = self.codec_model.encode(audio_prompt.to(self.device), target_bw=0.5)
raw_codes = raw_codes.transpose(0, 1)
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
code_ids = self.codectool.npy2ids(raw_codes[0])
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)]
audio_prompt_codec_ids = [self.mmtokenizer.soa] + self.codectool.sep_ids + audio_prompt_codec + [self.mmtokenizer.eoa]
sentence_ids = self.mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + self.mmtokenizer.tokenize(
"[end_of_reference]")
head_id = self.mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
else:
head_id = self.mmtokenizer.tokenize(prompt_texts[0])
prompt_ids = head_id + start_of_segment + self.mmtokenizer.tokenize(section_text) + [self.mmtokenizer.soa] + self.codectool.sep_ids
else:
prompt_ids = end_of_segment + start_of_segment + self.mmtokenizer.tokenize(section_text) + [self.mmtokenizer.soa] + self.codectool.sep_ids
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(self.device)
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids
max_context = 16384 - max_new_tokens - 1
if input_ids.shape[-1] > max_context:
print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
input_ids = input_ids[:, -(max_context):]
with torch.no_grad():
output_seq = self.stage1_model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
min_new_tokens=100,
do_sample=True,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=self.mmtokenizer.eoa,
pad_token_id=self.mmtokenizer.eoa,
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
guidance_scale=guidance_scale,
)
if output_seq[0][-1].item() != self.mmtokenizer.eoa:
tensor_eoa = torch.as_tensor([[self.mmtokenizer.eoa]]).to(self.stage1_model.device)
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
if i > 1:
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
else:
raw_output = output_seq
print(len(raw_output))
ids = raw_output[0].cpu().numpy()
soa_idx = np.where(ids == self.mmtokenizer.soa)[0].tolist()
eoa_idx = np.where(ids == self.mmtokenizer.eoa)[0].tolist()
if len(soa_idx) != len(eoa_idx):
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
vocals = []
instrumentals = []
range_begin = 1 if use_audio_prompt else 0
for i in range(range_begin, len(soa_idx)):
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
if codec_ids[0] == 32016:
codec_ids = codec_ids[1:]
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
vocals_ids = self.codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])
vocals.append(vocals_ids)
instrumentals_ids = self.codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])
instrumentals.append(instrumentals_ids)
vocals = np.concatenate(vocals, axis=1)
instrumentals = np.concatenate(instrumentals, axis=1)
vocal_save_path = os.path.join(stage1_output_dir,
f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_vocal_{random_id}".replace(
'.', '@') + '.npy')
inst_save_path = os.path.join(stage1_output_dir,
f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_instrumental_{random_id}".replace(
'.', '@') + '.npy')
np.save(vocal_save_path, vocals)
np.save(inst_save_path, instrumentals)
stage1_output_set.append(vocal_save_path)
stage1_output_set.append(inst_save_path)
print("Converting to Audio...")
recons_output_dir = os.path.join(output_dir, "recons")
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
os.makedirs(recons_mix_dir, exist_ok=True)
tracks = []
for npy in stage1_output_set:
codec_result = np.load(npy)
decodec_rlt = []
with torch.no_grad():
decoded_waveform = self.codec_model.decode(
torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(self.device))
decoded_waveform = decoded_waveform.cpu().squeeze(0)
decodec_rlt.append(torch.as_tensor(decoded_waveform))
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
tracks.append(save_path)
save_audio(decodec_rlt, save_path, 16000)
for inst_path in tracks:
try:
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
and 'instrumental' in inst_path:
vocal_path = inst_path.replace('instrumental', 'vocal')
if not os.path.exists(vocal_path):
continue
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
vocal_stem, sr = sf.read(inst_path)
instrumental_stem, _ = sf.read(vocal_path)
mix_stem = (vocal_stem + instrumental_stem) / 1
sf.write(recons_mix, mix_stem, sr)
except Exception as e:
print(e)
return recons_mix
# --- Gradio Interface ---
music_generator = MusicGenerator() # Initialize the music generator here to keep the model loaded
@spaces.GPU(duration=120)
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=200):
"""Inference function for the Gradio interface."""
os.makedirs(OUTPUT_DIR, exist_ok=True)
print(f"Output folder ensured at: {OUTPUT_DIR}")
empty_output_folder(OUTPUT_DIR)
try:
music = music_generator.generate(
genre_txt=genre_txt_content,
lyrics_txt=lyrics_txt_content,
run_n_segments=num_segments,
output_dir=OUTPUT_DIR,
max_new_tokens=max_new_tokens
)
return music
except Exception as e:
print(f"Error occurred during inference: {e}")
return None
finally:
print("Temporary files deleted.")
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/multimodal-art-projection/YuE">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://map-yue.github.io">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
</div>
""")
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(label="Genre")
lyrics_txt = gr.Textbox(label="Lyrics")
with gr.Column():
if IS_SHARED_UI:
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Max New Tokens", info="100 tokens equals 1 second long music", minimum=100, maximum="3000", step=100, value=500, interactive=True)
else:
num_segments = gr.Number(label="Number of Song Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Max New Tokens", minimum=500, maximum="24000", step=500, value=3000, interactive=True)
submit_btn = gr.Button("Submit")
music_out = gr.Audio(label="Audio Result")
gr.Examples(
examples=[
[
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
"""[verse]
In the quiet of the evening, shadows start to fall
Whispers of the night wind echo through the hall
Lost within the silence, I hear your gentle voice
Guiding me back homeward, making my heart rejoice
[chorus]
Don't let this moment fade, hold me close tonight
With you here beside me, everything's alright
Can't imagine life alone, don't want to let you go
Stay with me forever, let our love just flow
"""
],
[
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
"""[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands
[chorus]
This is my life, and I'm aiming for the top
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
"""
]
],
inputs=[genre_txt, lyrics_txt],
outputs=[music_out],
cache_examples=False,
# cache_mode="lazy", # not enable cache yet
fn=infer
)
submit_btn.click(
fn=infer,
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
outputs=[music_out]
)
demo.queue().launch(show_api=False, show_error=True)