File size: 19,023 Bytes
6c02161 b2d8a8c 59e8f28 b2d8a8c 6df3b9e 0df1f1c 59e8f28 9df60ba 59e8f28 9df60ba 59e8f28 9df60ba b2d8a8c 9df60ba 59e8f28 9df60ba b2d8a8c 9df60ba b2d8a8c 9df60ba b2d8a8c 75f341f 9df60ba b2d8a8c 98d025d 9df60ba 98d025d 9df60ba 22e7225 9df60ba 59e8f28 22e7225 9df60ba 22e7225 9df60ba 59e8f28 22e7225 9df60ba 22e7225 9df60ba 22e7225 9df60ba 59e8f28 9df60ba 59e8f28 9df60ba 59e8f28 9df60ba 59e8f28 9df60ba 59e8f28 9df60ba 59e8f28 9df60ba 59e8f28 b8a38aa 9df60ba 725074b 9df60ba b8a38aa 9df60ba 725074b 59e8f28 9df60ba 725074b 22e7225 9df60ba 59e8f28 9df60ba 22e7225 9df60ba 59e8f28 9df60ba 725074b 22e7225 b2d8a8c 9df60ba b2d8a8c 725074b 9df60ba 725074b 9df60ba 725074b 59e8f28 725074b 9df60ba 725074b 9df60ba 725074b b2d8a8c 725074b b2d8a8c 725074b b8a38aa 725074b 9df60ba 22e7225 725074b 9df60ba 725074b 9df60ba 725074b 9df60ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import torch
from huggingface_hub import snapshot_download
import uuid
import time
from tqdm import tqdm
from einops import rearrange
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
from omegaconf import OmegaConf
import numpy as np
import re
import sys
from collections import Counter
# --- Constants and Setup ---
IS_SHARED_UI = "innova-ai/YuE-music-generator-demo" in os.environ.get('SPACE_ID', '')
OUTPUT_DIR = "./output"
XCODEC_MINI_INFER_DIR = "./xcodec_mini_infer"
MODEL_ID = "m-a-p/YuE-s1-7B-anneal-en-cot"
# Install flash-attn
def install_flash_attn():
try:
print("Installing flash-attn...")
# Install flash attention
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
check=True # Use check=True to raise an exception on failure
)
print("flash-attn installed successfully!")
except subprocess.CalledProcessError as e:
print(f"Failed to install flash-attn: {e}")
exit(1)
install_flash_attn()
# --- Utility Functions ---
def download_xcodec_resources():
"""Downloads xcodec inference files."""
if not os.path.exists(XCODEC_MINI_INFER_DIR):
os.makedirs(XCODEC_MINI_INFER_DIR, exist_ok=True)
print(f"Created folder at: {XCODEC_MINI_INFER_DIR}")
snapshot_download(repo_id="m-a-p/xcodec_mini_infer", local_dir=XCODEC_MINI_INFER_DIR)
else:
print(f"Folder already exists at: {XCODEC_MINI_INFER_DIR}")
download_xcodec_resources()
# Add xcodec paths
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
from models.soundstream_hubert_new import SoundStream
from vocoder import build_codec_model, process_audio
from post_process_audio import replace_low_freq_with_energy_matched
def empty_output_folder(output_dir):
"""Empties the output folder."""
for file in os.listdir(output_dir):
file_path = os.path.join(output_dir, file)
try:
if os.path.isdir(file_path):
shutil.rmtree(file_path)
else:
os.remove(file_path)
except Exception as e:
print(f"Error deleting file {file_path}: {e}")
def create_temp_file(content, prefix, suffix=".txt"):
"""Creates a temporary file with content."""
temp_file = tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix)
content = content.strip() + "\n\n"
content = content.replace("\r\n", "\n").replace("\r", "\n")
temp_file.write(content)
temp_file.close()
print(f"\nContent written to {prefix}{suffix}:\n{content}\n---")
return temp_file.name
def get_last_mp3_file(output_dir):
"""Gets the most recently modified MP3 file in a directory."""
mp3_files = [file for file in os.listdir(output_dir) if file.endswith('.mp3')]
if not mp3_files:
print("No .mp3 files found in the output folder.")
return None
mp3_files_with_path = [os.path.join(output_dir, file) for file in mp3_files]
mp3_files_with_path.sort(key=os.path.getmtime, reverse=True)
return mp3_files_with_path[0]
class BlockTokenRangeProcessor(LogitsProcessor):
def __init__(self, start_id, end_id):
self.blocked_token_ids = list(range(start_id, end_id))
def __call__(self, input_ids, scores):
scores[:, self.blocked_token_ids] = -float("inf")
return scores
def load_audio_mono(filepath, sampling_rate=16000):
"""Loads an audio file and converts to mono, optionally resamples."""
audio, sr = torchaudio.load(filepath)
audio = torch.mean(audio, dim=0, keepdim=True)
if sr != sampling_rate:
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
audio = resampler(audio)
return audio
def split_lyrics(lyrics: str):
"""Splits lyrics into segments based on bracketed headers."""
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
segments = re.findall(pattern, lyrics, re.DOTALL)
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
return structured_lyrics
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
"""Saves an audio tensor to disk."""
folder_path = os.path.dirname(path)
if not os.path.exists(folder_path):
os.makedirs(folder_path)
limit = 0.99
max_val = wav.abs().max()
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
# --- Music Generation Class ---
class MusicGenerator:
def __init__(self, device="cuda:0", basic_model_config=f'{XCODEC_MINI_INFER_DIR}/final_ckpt/config.yaml', resume_path=f'{XCODEC_MINI_INFER_DIR}/final_ckpt/ckpt_00360000.pth'):
self.device = torch.device(device if torch.cuda.is_available() else "cpu")
self.mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
self.codectool = CodecManipulator("xcodec", 0, 1)
model_config = OmegaConf.load(basic_model_config)
self.codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(self.device)
parameter_dict = torch.load(resume_path, map_location='cpu')
self.codec_model.load_state_dict(parameter_dict['codec_model'])
self.codec_model.to(self.device)
self.codec_model.eval()
# load stage1 model to GPU at initial time
self.stage1_model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
).to(self.device)
self.stage1_model.eval()
def generate(
self,
genre_txt=None,
lyrics_txt=None,
max_new_tokens=3000,
run_n_segments=2,
use_audio_prompt=False,
audio_prompt_path="",
prompt_start_time=0.0,
prompt_end_time=30.0,
output_dir=OUTPUT_DIR,
keep_intermediate=False,
disable_offload_model=False,
rescale=False
):
if use_audio_prompt and not audio_prompt_path:
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
stage1_output_dir = os.path.join(output_dir, f"stage1")
os.makedirs(stage1_output_dir, exist_ok=True)
stage1_output_set = []
genres = genre_txt.strip()
lyrics = split_lyrics(lyrics_txt + "\n")
full_lyrics = "\n".join(lyrics)
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
prompt_texts += lyrics
random_id = uuid.uuid4()
output_seq = None
top_p = 0.93
temperature = 1.0
repetition_penalty = 1.2
start_of_segment = self.mmtokenizer.tokenize('[start_of_segment]')
end_of_segment = self.mmtokenizer.tokenize('[end_of_segment]')
raw_output = None
run_n_segments = min(run_n_segments + 1, len(lyrics))
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
guidance_scale = 1.5 if i <= 1 else 1.2
if i == 0:
continue
if i == 1:
if use_audio_prompt:
audio_prompt = load_audio_mono(audio_prompt_path)
audio_prompt.unsqueeze_(0)
with torch.no_grad():
raw_codes = self.codec_model.encode(audio_prompt.to(self.device), target_bw=0.5)
raw_codes = raw_codes.transpose(0, 1)
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
code_ids = self.codectool.npy2ids(raw_codes[0])
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)]
audio_prompt_codec_ids = [self.mmtokenizer.soa] + self.codectool.sep_ids + audio_prompt_codec + [self.mmtokenizer.eoa]
sentence_ids = self.mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + self.mmtokenizer.tokenize(
"[end_of_reference]")
head_id = self.mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
else:
head_id = self.mmtokenizer.tokenize(prompt_texts[0])
prompt_ids = head_id + start_of_segment + self.mmtokenizer.tokenize(section_text) + [self.mmtokenizer.soa] + self.codectool.sep_ids
else:
prompt_ids = end_of_segment + start_of_segment + self.mmtokenizer.tokenize(section_text) + [self.mmtokenizer.soa] + self.codectool.sep_ids
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(self.device)
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids
max_context = 16384 - max_new_tokens - 1
if input_ids.shape[-1] > max_context:
print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
input_ids = input_ids[:, -(max_context):]
with torch.no_grad():
output_seq = self.stage1_model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
min_new_tokens=100,
do_sample=True,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=self.mmtokenizer.eoa,
pad_token_id=self.mmtokenizer.eoa,
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
guidance_scale=guidance_scale,
)
if output_seq[0][-1].item() != self.mmtokenizer.eoa:
tensor_eoa = torch.as_tensor([[self.mmtokenizer.eoa]]).to(self.stage1_model.device)
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
if i > 1:
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
else:
raw_output = output_seq
print(len(raw_output))
ids = raw_output[0].cpu().numpy()
soa_idx = np.where(ids == self.mmtokenizer.soa)[0].tolist()
eoa_idx = np.where(ids == self.mmtokenizer.eoa)[0].tolist()
if len(soa_idx) != len(eoa_idx):
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
vocals = []
instrumentals = []
range_begin = 1 if use_audio_prompt else 0
for i in range(range_begin, len(soa_idx)):
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
if codec_ids[0] == 32016:
codec_ids = codec_ids[1:]
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
vocals_ids = self.codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])
vocals.append(vocals_ids)
instrumentals_ids = self.codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])
instrumentals.append(instrumentals_ids)
vocals = np.concatenate(vocals, axis=1)
instrumentals = np.concatenate(instrumentals, axis=1)
vocal_save_path = os.path.join(stage1_output_dir,
f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_vocal_{random_id}".replace(
'.', '@') + '.npy')
inst_save_path = os.path.join(stage1_output_dir,
f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_instrumental_{random_id}".replace(
'.', '@') + '.npy')
np.save(vocal_save_path, vocals)
np.save(inst_save_path, instrumentals)
stage1_output_set.append(vocal_save_path)
stage1_output_set.append(inst_save_path)
print("Converting to Audio...")
recons_output_dir = os.path.join(output_dir, "recons")
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
os.makedirs(recons_mix_dir, exist_ok=True)
tracks = []
for npy in stage1_output_set:
codec_result = np.load(npy)
decodec_rlt = []
with torch.no_grad():
decoded_waveform = self.codec_model.decode(
torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(self.device))
decoded_waveform = decoded_waveform.cpu().squeeze(0)
decodec_rlt.append(torch.as_tensor(decoded_waveform))
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
tracks.append(save_path)
save_audio(decodec_rlt, save_path, 16000)
for inst_path in tracks:
try:
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
and 'instrumental' in inst_path:
vocal_path = inst_path.replace('instrumental', 'vocal')
if not os.path.exists(vocal_path):
continue
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
vocal_stem, sr = sf.read(inst_path)
instrumental_stem, _ = sf.read(vocal_path)
mix_stem = (vocal_stem + instrumental_stem) / 1
sf.write(recons_mix, mix_stem, sr)
except Exception as e:
print(e)
return recons_mix
# --- Gradio Interface ---
music_generator = MusicGenerator() # Initialize the music generator here to keep the model loaded
@spaces.GPU(duration=120)
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=200):
"""Inference function for the Gradio interface."""
os.makedirs(OUTPUT_DIR, exist_ok=True)
print(f"Output folder ensured at: {OUTPUT_DIR}")
empty_output_folder(OUTPUT_DIR)
try:
music = music_generator.generate(
genre_txt=genre_txt_content,
lyrics_txt=lyrics_txt_content,
run_n_segments=num_segments,
output_dir=OUTPUT_DIR,
max_new_tokens=max_new_tokens
)
return music
except Exception as e:
print(f"Error occurred during inference: {e}")
return None
finally:
print("Temporary files deleted.")
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/multimodal-art-projection/YuE">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://map-yue.github.io">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
</div>
""")
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(label="Genre")
lyrics_txt = gr.Textbox(label="Lyrics")
with gr.Column():
if IS_SHARED_UI:
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Max New Tokens", info="100 tokens equals 1 second long music", minimum=100, maximum="3000", step=100, value=500, interactive=True)
else:
num_segments = gr.Number(label="Number of Song Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Max New Tokens", minimum=500, maximum="24000", step=500, value=3000, interactive=True)
submit_btn = gr.Button("Submit")
music_out = gr.Audio(label="Audio Result")
gr.Examples(
examples=[
[
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
"""[verse]
In the quiet of the evening, shadows start to fall
Whispers of the night wind echo through the hall
Lost within the silence, I hear your gentle voice
Guiding me back homeward, making my heart rejoice
[chorus]
Don't let this moment fade, hold me close tonight
With you here beside me, everything's alright
Can't imagine life alone, don't want to let you go
Stay with me forever, let our love just flow
"""
],
[
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
"""[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands
[chorus]
This is my life, and I'm aiming for the top
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
"""
]
],
inputs=[genre_txt, lyrics_txt],
outputs=[music_out],
cache_examples=False,
# cache_mode="lazy", # not enable cache yet
fn=infer
)
submit_btn.click(
fn=infer,
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
outputs=[music_out]
)
demo.queue().launch(show_api=False, show_error=True) |