|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class VectorQuantize(nn.Module): |
|
"""Vector quantization w/ exponential moving averages (EMA)""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
codebook_size: int, |
|
decay=0.8, |
|
commitment=1., |
|
eps=1e-5, |
|
n_embed=None, |
|
): |
|
super().__init__() |
|
n_embed = self.default(n_embed, codebook_size) |
|
|
|
self.dim = dim |
|
self.n_embed = n_embed |
|
self.decay = decay |
|
self.eps = eps |
|
self.commitment = commitment |
|
|
|
embed = torch.randn(dim, n_embed) |
|
self.register_buffer('embed', embed) |
|
self.register_buffer('cluster_size', torch.zeros(n_embed)) |
|
self.register_buffer('embed_avg', embed.clone()) |
|
|
|
@property |
|
def codebook(self): |
|
return self.embed.transpose(0, 1) |
|
|
|
def exists(self, val): |
|
return val is not None |
|
|
|
def default(self, val, d): |
|
return val if self.exists(val) else d |
|
|
|
def ema_inplace(self, moving_avg, new, decay): |
|
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) |
|
|
|
def laplace_smoothing(self, x, n_categories, eps=1e-5): |
|
return (x + eps) / (x.sum() + n_categories * eps) |
|
|
|
def forward(self, input): |
|
dtype = input.dtype |
|
flatten = input.reshape(-1, self.dim) |
|
dist = ( |
|
flatten.pow(2).sum(1, keepdim=True) |
|
- 2 * flatten @ self.embed |
|
+ self.embed.pow(2).sum(0, keepdim=True) |
|
) |
|
_, embed_ind = (-dist).max(1) |
|
embed_onehot = F.one_hot(embed_ind, self.n_embed).type(dtype) |
|
embed_ind = embed_ind.view(*input.shape[:-1]) |
|
quantize = F.embedding(embed_ind, self.embed.transpose(0, 1)) |
|
|
|
if self.training: |
|
self.ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay) |
|
embed_sum = flatten.transpose(0, 1) @ embed_onehot |
|
self.ema_inplace(self.embed_avg, embed_sum, self.decay) |
|
cluster_size = self.laplace_smoothing(self.cluster_size, self.n_embed, self.eps) * self.cluster_size.sum() |
|
embed_normalized = self.embed_avg / cluster_size.unsqueeze(0) |
|
self.embed.data.copy_(embed_normalized) |
|
|
|
loss = F.mse_loss(quantize.detach(), input) * self.commitment |
|
quantize = input + (quantize - input).detach() |
|
|
|
avg_probs = torch.mean(embed_onehot, dim=0) |
|
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) |
|
|
|
return quantize, loss, perplexity |
|
|
|
def forward_index(self, input): |
|
dtype = input.dtype |
|
flatten = input.reshape(-1, self.dim) |
|
dist = ( |
|
flatten.pow(2).sum(1, keepdim=True) |
|
- 2 * flatten @ self.embed |
|
+ self.embed.pow(2).sum(0, keepdim=True) |
|
) |
|
_, embed_ind = (-dist).max(1) |
|
embed_onehot = F.one_hot(embed_ind, self.n_embed).type(dtype) |
|
embed_ind = embed_ind.view(*input.shape[:-1]) |
|
quantize = F.embedding(embed_ind, self.embed.transpose(0, 1)) |
|
quantize = input + (quantize - input).detach() |
|
|
|
return quantize, embed_ind |
|
|
|
|
|
class ResidualVQ(nn.Module): |
|
""" Residual VQ following algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf """ |
|
|
|
def __init__( |
|
self, |
|
*, |
|
num_quantizers, |
|
**kwargs |
|
): |
|
super().__init__() |
|
self.layers = nn.ModuleList([VectorQuantize(**kwargs) for _ in range(num_quantizers)]) |
|
|
|
def forward(self, x): |
|
quantized_out = 0. |
|
residual = x |
|
all_losses = [] |
|
all_perplexities = [] |
|
for layer in self.layers: |
|
quantized, loss, perplexity = layer(residual) |
|
|
|
|
|
|
|
residual = residual - quantized |
|
quantized_out = quantized_out + quantized |
|
all_losses.append(loss) |
|
all_perplexities.append(perplexity) |
|
all_losses, all_perplexities = map(torch.stack, (all_losses, all_perplexities)) |
|
return quantized_out, all_losses, all_perplexities |
|
|
|
def forward_index(self, x, flatten_idx=False): |
|
quantized_out = 0. |
|
residual = x |
|
all_indices = [] |
|
for i, layer in enumerate(self.layers): |
|
quantized, indices = layer.forward_index(residual) |
|
|
|
residual = residual - quantized |
|
quantized_out = quantized_out + quantized |
|
if flatten_idx: |
|
indices += (self.codebook_size * i) |
|
all_indices.append(indices) |
|
all_indices = torch.stack(all_indices) |
|
return quantized_out, all_indices.squeeze(1) |
|
|
|
def initial(self): |
|
self.codebook = [] |
|
for layer in self.layers: |
|
self.codebook.append(layer.codebook) |
|
self.codebook_size = self.codebook[0].size(0) |
|
self.codebook = torch.stack(self.codebook) |
|
self.codebook = self.codebook.reshape(-1, self.codebook.size(-1)) |
|
|
|
def lookup(self, indices): |
|
quantized_out = F.embedding(indices, self.codebook) |
|
return torch.sum(quantized_out, dim=0, keepdim=True) |
|
|