File size: 5,764 Bytes
5873fc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright (c) ByteDance, Inc. and its affiliates.
# Copyright (c) Chutong Meng
#
# This source code is licensed under the CC BY-NC license found in the
# LICENSE file in the root directory of this source tree.
# Based on AudioDec (https://github.com/facebookresearch/AudioDec)

import torch
import torch.nn as nn
import torch.nn.functional as F


class VectorQuantize(nn.Module):
    """Vector quantization w/ exponential moving averages (EMA)"""

    def __init__(
            self,
            dim: int,
            codebook_size: int,
            decay=0.8,
            commitment=1.,
            eps=1e-5,
            n_embed=None,
    ):
        super().__init__()
        n_embed = self.default(n_embed, codebook_size)

        self.dim = dim
        self.n_embed = n_embed
        self.decay = decay
        self.eps = eps
        self.commitment = commitment

        embed = torch.randn(dim, n_embed)
        self.register_buffer('embed', embed)
        self.register_buffer('cluster_size', torch.zeros(n_embed))
        self.register_buffer('embed_avg', embed.clone())

    @property
    def codebook(self):
        return self.embed.transpose(0, 1)

    def exists(self, val):
        return val is not None

    def default(self, val, d):
        return val if self.exists(val) else d

    def ema_inplace(self, moving_avg, new, decay):
        moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))

    def laplace_smoothing(self, x, n_categories, eps=1e-5):
        return (x + eps) / (x.sum() + n_categories * eps)

    def forward(self, input):
        dtype = input.dtype
        flatten = input.reshape(-1, self.dim)
        dist = (
                flatten.pow(2).sum(1, keepdim=True)
                - 2 * flatten @ self.embed
                + self.embed.pow(2).sum(0, keepdim=True)
        )
        _, embed_ind = (-dist).max(1)
        embed_onehot = F.one_hot(embed_ind, self.n_embed).type(dtype)
        embed_ind = embed_ind.view(*input.shape[:-1])
        quantize = F.embedding(embed_ind, self.embed.transpose(0, 1))

        if self.training:
            self.ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay)
            embed_sum = flatten.transpose(0, 1) @ embed_onehot
            self.ema_inplace(self.embed_avg, embed_sum, self.decay)
            cluster_size = self.laplace_smoothing(self.cluster_size, self.n_embed, self.eps) * self.cluster_size.sum()
            embed_normalized = self.embed_avg / cluster_size.unsqueeze(0)
            self.embed.data.copy_(embed_normalized)

        loss = F.mse_loss(quantize.detach(), input) * self.commitment
        quantize = input + (quantize - input).detach()

        avg_probs = torch.mean(embed_onehot, dim=0)
        perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))

        return quantize, loss, perplexity

    def forward_index(self, input):
        dtype = input.dtype
        flatten = input.reshape(-1, self.dim)
        dist = (
                flatten.pow(2).sum(1, keepdim=True)
                - 2 * flatten @ self.embed
                + self.embed.pow(2).sum(0, keepdim=True)
        )
        _, embed_ind = (-dist).max(1)
        embed_onehot = F.one_hot(embed_ind, self.n_embed).type(dtype)
        embed_ind = embed_ind.view(*input.shape[:-1])
        quantize = F.embedding(embed_ind, self.embed.transpose(0, 1))
        quantize = input + (quantize - input).detach()

        return quantize, embed_ind


class ResidualVQ(nn.Module):
    """ Residual VQ following algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf """

    def __init__(
            self,
            *,
            num_quantizers,
            **kwargs
    ):
        super().__init__()
        self.layers = nn.ModuleList([VectorQuantize(**kwargs) for _ in range(num_quantizers)])

    def forward(self, x):
        quantized_out = 0.
        residual = x
        all_losses = []
        all_perplexities = []
        for layer in self.layers:
            quantized, loss, perplexity = layer(residual)
            # Issue: https://github.com/lucidrains/vector-quantize-pytorch/issues/33
            # We found considering only the 1st layer VQ's graident results in better performance
            # residual = residual - quantized.detach() # considering all layers' graidents
            residual = residual - quantized  # considering only the first layer's graident
            quantized_out = quantized_out + quantized
            all_losses.append(loss)
            all_perplexities.append(perplexity)
        all_losses, all_perplexities = map(torch.stack, (all_losses, all_perplexities))
        return quantized_out, all_losses, all_perplexities

    def forward_index(self, x, flatten_idx=False):
        quantized_out = 0.
        residual = x
        all_indices = []
        for i, layer in enumerate(self.layers):
            quantized, indices = layer.forward_index(residual)
            # residual = residual - quantized.detach()
            residual = residual - quantized
            quantized_out = quantized_out + quantized
            if flatten_idx:
                indices += (self.codebook_size * i)
            all_indices.append(indices)
        all_indices = torch.stack(all_indices)
        return quantized_out, all_indices.squeeze(1)

    def initial(self):
        self.codebook = []
        for layer in self.layers:
            self.codebook.append(layer.codebook)
        self.codebook_size = self.codebook[0].size(0)
        self.codebook = torch.stack(self.codebook)
        self.codebook = self.codebook.reshape(-1, self.codebook.size(-1))

    def lookup(self, indices):
        quantized_out = F.embedding(indices, self.codebook)  # Num x T x C
        return torch.sum(quantized_out, dim=0, keepdim=True)