KingNish's picture
Upload ./RepCodec/examples/whisper_model.py with huggingface_hub
a82df09 verified
raw
history blame
2.02 kB
# Copyright (c) ByteDance, Inc. and its affiliates.
# Copyright (c) Chutong Meng
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# Based on fairseq (https://github.com/facebookresearch/fairseq) and
# Whisper (https://github.com/openai/whisper/)
from typing import Optional
import torch
import torch.nn.functional as F
from torch import Tensor
from whisper.model import AudioEncoder, sinusoids, Whisper, ModelDimensions
class AudioEncoder_(AudioEncoder):
def __init__(self, *args, **kwargs):
super(AudioEncoder_, self).__init__(*args, **kwargs)
def extract_feature(self, x: Tensor, target_layer: Optional[int] = None):
"""
x : torch.Tensor, shape = (batch_size, n_mels, n_ctx)
the mel spectrogram of the audio
"""
x = F.gelu(self.conv1(x))
x = F.gelu(self.conv2(x))
x = x.permute(0, 2, 1)
length_x = x.shape[1]
if length_x > self.positional_embedding.shape[0]:
self.register_buffer("positional_embedding", sinusoids(length_x, self.positional_embedding.shape[1]))
self.positional_embedding = self.positional_embedding.to(x.device)
x = (x + self.positional_embedding[:length_x, :]).to(x.dtype)
if target_layer is None:
target_layer = len(self.blocks)
for block in self.blocks[:target_layer]:
x = block(x)
return x
class Whisper_(Whisper):
def __init__(self, dims: ModelDimensions):
super(Whisper_, self).__init__(dims)
# replace audio encoder with our audio encoder
self.encoder = AudioEncoder_(
self.dims.n_mels,
self.dims.n_audio_ctx,
self.dims.n_audio_state,
self.dims.n_audio_head,
self.dims.n_audio_layer,
)
def extract_features(self, mel: torch.Tensor, target_layer: Optional[int] = None):
return self.encoder.extract_feature(mel, target_layer)