Spaces:
Build error
Build error
import gradio as gr | |
import subprocess | |
import os | |
import shutil | |
import tempfile | |
import spaces | |
import sys | |
import re | |
print("Installing flash-attn...") | |
# Install flash attention | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
from huggingface_hub import snapshot_download | |
# Create xcodec_mini_infer folder | |
folder_path = './xcodec_mini_infer' | |
# Create the folder if it doesn't exist | |
if not os.path.exists(folder_path): | |
os.mkdir(folder_path) | |
print(f"Folder created at: {folder_path}") | |
else: | |
print(f"Folder already exists at: {folder_path}") | |
snapshot_download( | |
repo_id = "m-a-p/xcodec_mini_infer", | |
local_dir = "./xcodec_mini_infer" | |
) | |
# Change to the "inference" directory | |
inference_dir = "." | |
try: | |
os.chdir(inference_dir) | |
print(f"Changed working directory to: {os.getcwd()}") | |
except FileNotFoundError: | |
print(f"Directory not found: {inference_dir}") | |
exit(1) | |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer')) | |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec')) | |
import gradio as gr | |
import os | |
import shutil | |
import tempfile | |
import spaces | |
import torch | |
import numpy as np | |
from pathlib import Path | |
from huggingface_hub import snapshot_download | |
from omegaconf import OmegaConf | |
import torchaudio | |
import soundfile as sf | |
from functools import lru_cache | |
from concurrent.futures import ThreadPoolExecutor | |
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessorList | |
from models.soundstream_hubert_new import SoundStream | |
from vocoder import build_codec_model | |
from mmtokenizer import _MMSentencePieceTokenizer | |
from codecmanipulator import CodecManipulator | |
# -------------------------- | |
# Configuration Constants | |
# -------------------------- | |
MODEL_DIR = Path("./xcodec_mini_infer") | |
OUTPUT_DIR = Path("./output") | |
DEVICE = "cuda:0" | |
TORCH_DTYPE = torch.float16 | |
MAX_CONTEXT = 16384 - 3000 - 1 | |
MAX_SEQ_LEN = 16384 | |
# -------------------------- | |
# Preload Models with KV Cache Initialization | |
# -------------------------- | |
# Text generation model with KV cache support | |
model = AutoModelForCausalLM.from_pretrained( | |
"m-a-p/YuE-s1-7B-anneal-en-cot", | |
torch_dtype=TORCH_DTYPE, | |
attn_implementation="flash_attention_2", | |
use_cache=True # Enable KV caching | |
).to(DEVICE).eval() | |
# Tokenizer and codec tools | |
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") | |
codectool = CodecManipulator("xcodec", 0, 1) | |
# Audio codec model | |
model_config = OmegaConf.load(MODEL_DIR/"final_ckpt/config.yaml") | |
codec_model = SoundStream(**model_config.generator.config).to(DEVICE) | |
codec_model.load_state_dict( | |
torch.load(MODEL_DIR/"final_ckpt/ckpt_00360000.pth", map_location='cpu')['codec_model'] | |
) | |
codec_model.eval() | |
# Vocoders | |
vocal_decoder, inst_decoder = build_codec_model( | |
MODEL_DIR/"decoders/config.yaml", | |
MODEL_DIR/"decoders/decoder_131000.pth", | |
MODEL_DIR/"decoders/decoder_151000.pth" | |
) | |
# -------------------------- | |
# Optimized Generation with KV Cache Management | |
# -------------------------- | |
class KVCacheManager: | |
def __init__(self, model): | |
self.model = model | |
self.past_key_values = None | |
self.current_length = 0 | |
def reset(self): | |
self.past_key_values = None | |
self.current_length = 0 | |
def generate_with_cache(self, input_ids, generation_config): | |
outputs = self.model( | |
input_ids, | |
past_key_values=self.past_key_values, | |
use_cache=True, | |
output_hidden_states=False, | |
return_dict=True | |
) | |
self.past_key_values = outputs.past_key_values | |
self.current_length += input_ids.shape[1] | |
return outputs.logits | |
def split_lyrics(lyrics: str): | |
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)" | |
segments = re.findall(pattern, lyrics, re.DOTALL) | |
return [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments] | |
def process_audio_batch(codec_ids, decoder, sample_rate=44100): | |
decoded = codec_model.decode( | |
torch.as_tensor(codec_ids.astype(np.int16), dtype=torch.long) | |
.unsqueeze(0).permute(1, 0, 2).to(DEVICE) | |
) | |
return decoded.cpu().squeeze(0) | |
# -------------------------- | |
# Core Generation Logic with KV Cache | |
# -------------------------- | |
def generate_music(genre_txt, lyrics_txt, num_segments=2, max_new_tokens=2000): | |
# Initialize KV cache manager | |
cache_manager = KVCacheManager(model) | |
# Preprocess inputs | |
genres = genre_txt.strip() | |
structured_lyrics = split_lyrics(lyrics_txt+"\n") | |
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{''.join(structured_lyrics)}"] + structured_lyrics | |
# Generation loop with KV cache | |
all_generated = [] | |
for i in range(1, min(num_segments+1, len(prompt_texts))): | |
input_ids = prepare_inputs(prompt_texts, i, all_generated) | |
input_ids = input_ids.to(DEVICE) | |
# Generate segment with KV cache | |
segment_output = [] | |
for _ in range(max_new_tokens): | |
logits = cache_manager.generate_with_cache(input_ids, None) | |
# Sampling logic | |
probs = torch.nn.functional.softmax(logits[:, -1], dim=-1) | |
next_token = torch.multinomial(probs, num_samples=1) | |
segment_output.append(next_token.item()) | |
input_ids = next_token.unsqueeze(0) | |
if next_token == mmtokenizer.eoa: | |
break | |
all_generated.extend(segment_output) | |
# Prevent cache overflow | |
if cache_manager.current_length > MAX_SEQ_LEN * 0.8: | |
cache_manager.reset() | |
# Process outputs | |
ids = np.array(all_generated) | |
vocals, instrumentals = process_outputs(ids) | |
# Parallel audio processing | |
with ThreadPoolExecutor() as executor: | |
vocal_future = executor.submit(process_audio_batch, vocals, vocal_decoder) | |
inst_future = executor.submit(process_audio_batch, instrumentals, inst_decoder) | |
vocal_wav = vocal_future.result() | |
inst_wav = inst_future.result() | |
# Mix and post-process | |
mixed = (vocal_wav + inst_wav) / 2 | |
final_path = OUTPUT_DIR/"final_output.mp3" | |
save_audio(mixed, final_path, 44100) | |
return str(final_path) | |
# -------------------------- | |
# Optimized Helper Functions | |
# -------------------------- | |
def prepare_inputs(prompt_texts, index, previous_tokens): | |
current_prompt = mmtokenizer.tokenize(prompt_texts[index]) | |
return torch.tensor([previous_tokens + current_prompt], dtype=torch.long, device=DEVICE) | |
def process_outputs(ids): | |
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist() | |
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist() | |
vocals = [] | |
instrumentals = [] | |
for i in range(len(soa_idx)): | |
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]] | |
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)] | |
vocals.append(codectool.ids2npy(codec_ids[::2])) | |
instrumentals.append(codectool.ids2npy(codec_ids[1::2])) | |
return np.concatenate(vocals, axis=1), np.concatenate(instrumentals, axis=1) | |
def save_audio(wav, path, sr): | |
wav = wav.clamp(-0.99, 0.99) | |
torchaudio.save(path, wav.cpu(), sr, encoding='PCM_S', bits_per_sample=16) | |
# -------------------------- | |
# Gradio Interface | |
# -------------------------- | |
def infer(genre, lyrics, num_segments=2, max_tokens=2000): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
return generate_music(genre, lyrics, num_segments, max_tokens) | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("# YuE Music Generator with KV Cache Optimization") | |
with gr.Row(): | |
with gr.Column(): | |
genre_txt = gr.Textbox(label="Genre", placeholder="e.g., pop electronic female vocal") | |
lyrics_txt = gr.Textbox(label="Lyrics", lines=8, | |
placeholder="""[verse]\nYour lyrics here...""") | |
num_segments = gr.Slider(1, 10, value=2, label="Song Segments") | |
max_tokens = gr.Slider(100, 3000, value=1000, step=100, | |
label="Max Tokens per Segment (100≈1sec)") | |
submit_btn = gr.Button("Generate Music") | |
with gr.Column(): | |
audio_output = gr.Audio(label="Generated Music", interactive=False) | |
gr.Examples( | |
examples=[ | |
["pop rock male vocal", """[verse] | |
Woke up in the morning, sun is shining bright | |
Chasing all my dreams, gotta get my mind right | |
City lights are fading, but my vision's clear | |
Got my team beside me, no room for fear | |
Walking through the streets, beats inside my head | |
Every step I take, closer to the bread | |
People passing by, they don't understand | |
Building up my future with my own two hands | |
[chorus] | |
This is my life, and I'm aiming for the top | |
Never gonna quit, no, I'm never gonna stop | |
Through the highs and lows, I'mma keep it real | |
Living out my dreams with this mic and a deal"""], | |
["electronic dance synth female", """ | |
[verse] | |
In the quiet of the evening, shadows start to fall | |
Whispers of the night wind echo through the hall | |
Lost within the silence, I hear your gentle voice | |
Guiding me back homeward, making my heart rejoice | |
[chorus] | |
Don't let this moment fade, hold me close tonight | |
With you here beside me, everything's alright | |
Can't imagine life alone, don't want to let you go | |
Stay with me forever, let our love just flow | |
"""] | |
], | |
inputs=[genre_txt, lyrics_txt], | |
outputs=audio_output | |
) | |
submit_btn.click( | |
fn=infer, | |
inputs=[genre_txt, lyrics_txt, num_segments, max_tokens], | |
outputs=audio_output | |
) | |
demo.queue().launch() |