|
import gradio as gr |
|
import subprocess |
|
import os |
|
import shutil |
|
import tempfile |
|
import spaces |
|
import torch |
|
import sys |
|
import uuid |
|
import re |
|
|
|
print("Installing flash-attn...") |
|
|
|
subprocess.run( |
|
"pip install flash-attn --no-build-isolation", |
|
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, |
|
shell=True, |
|
) |
|
|
|
from huggingface_hub import snapshot_download |
|
|
|
|
|
folder_path = './xcodec_mini_infer' |
|
|
|
|
|
if not os.path.exists(folder_path): |
|
os.mkdir(folder_path) |
|
print(f"Folder created at: {folder_path}") |
|
else: |
|
print(f"Folder already exists at: {folder_path}") |
|
|
|
snapshot_download( |
|
repo_id="m-a-p/xcodec_mini_infer", |
|
local_dir="./xcodec_mini_infer" |
|
) |
|
|
|
|
|
inference_dir = "." |
|
try: |
|
os.chdir(inference_dir) |
|
print(f"Changed working directory to: {os.getcwd()}") |
|
except FileNotFoundError: |
|
print(f"Directory not found: {inference_dir}") |
|
exit(1) |
|
|
|
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer')) |
|
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec')) |
|
|
|
|
|
|
|
|
|
import argparse |
|
import numpy as np |
|
import json |
|
from omegaconf import OmegaConf |
|
import torchaudio |
|
from torchaudio.transforms import Resample |
|
import soundfile as sf |
|
from tqdm import tqdm |
|
from einops import rearrange |
|
from codecmanipulator import CodecManipulator |
|
from mmtokenizer import _MMSentencePieceTokenizer |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList |
|
from models.soundstream_hubert_new import SoundStream |
|
from vocoder import build_codec_model, process_audio |
|
from post_process_audio import replace_low_freq_with_energy_matched |
|
|
|
|
|
device = "cuda:0" |
|
|
|
|
|
print("Loading models...") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"m-a-p/YuE-s1-7B-anneal-en-cot", |
|
torch_dtype=torch.float16, |
|
attn_implementation="flash_attention_2", |
|
).to(device).eval() |
|
|
|
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml' |
|
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth' |
|
config_path = './xcodec_mini_infer/decoders/config.yaml' |
|
vocal_decoder_path = './xcodec_mini_infer/decoders/decoder_131000.pth' |
|
inst_decoder_path = './xcodec_mini_infer/decoders/decoder_151000.pth' |
|
|
|
|
|
model_config = OmegaConf.load(basic_model_config) |
|
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device) |
|
codec_model.load_state_dict(torch.load(resume_path, map_location='cpu')['codec_model']) |
|
codec_model.eval() |
|
|
|
|
|
vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path) |
|
vocal_decoder.to(device).eval() |
|
inst_decoder.to(device).eval() |
|
|
|
|
|
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") |
|
codectool = CodecManipulator("xcodec", 0, 1) |
|
|
|
def generate_music(genre_txt, lyrics_txt, max_new_tokens=5, run_n_segments=2, use_audio_prompt=False, audio_prompt_path="", prompt_start_time=0.0, prompt_end_time=30.0, rescale=False): |
|
if use_audio_prompt and not audio_prompt_path: |
|
raise FileNotFoundError("Please provide an audio prompt filepath when enabling 'use_audio_prompt'!") |
|
|
|
max_new_tokens *= 100 |
|
top_p = 0.93 |
|
temperature = 1.0 |
|
repetition_penalty = 1.2 |
|
|
|
|
|
def split_lyrics(lyrics): |
|
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)" |
|
segments = re.findall(pattern, lyrics, re.DOTALL) |
|
return [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments] |
|
|
|
lyrics = split_lyrics(lyrics_txt + "\n") |
|
full_lyrics = "\n".join(lyrics) |
|
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genre_txt.strip()}\n{full_lyrics}"] + lyrics |
|
|
|
raw_output = None |
|
stage1_output_set = [] |
|
|
|
class BlockTokenRangeProcessor(LogitsProcessor): |
|
def __init__(self, start_id, end_id): |
|
self.blocked_token_ids = list(range(start_id, end_id)) |
|
|
|
def __call__(self, input_ids, scores): |
|
scores[:, self.blocked_token_ids] = -float("inf") |
|
return scores |
|
|
|
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])): |
|
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '') |
|
guidance_scale = 1.5 if i <= 1 else 1.2 |
|
|
|
if i == 0: |
|
continue |
|
|
|
if i == 1 and use_audio_prompt: |
|
audio_prompt = load_audio_mono(audio_prompt_path) |
|
audio_prompt = audio_prompt.unsqueeze(0).to(device) |
|
raw_codes = codec_model.encode(audio_prompt, target_bw=0.5).transpose(0, 1).cpu().numpy().astype(np.int16) |
|
audio_prompt_codec = codectool.npy2ids(raw_codes[0])[int(prompt_start_time * 50): int(prompt_end_time * 50)] |
|
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa] |
|
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]") |
|
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids |
|
else: |
|
head_id = mmtokenizer.tokenize(prompt_texts[0]) |
|
|
|
prompt_ids = head_id + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids |
|
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device) |
|
|
|
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids |
|
|
|
max_context = 16384 - max_new_tokens - 1 |
|
if input_ids.shape[-1] > max_context: |
|
input_ids = input_ids[:, -(max_context):] |
|
|
|
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16): |
|
output_seq = model.generate( |
|
input_ids=input_ids, |
|
max_new_tokens=max_new_tokens, |
|
min_new_tokens=100, |
|
do_sample=True, |
|
top_p=top_p, |
|
temperature=temperature, |
|
repetition_penalty=repetition_penalty, |
|
eos_token_id=mmtokenizer.eoa, |
|
pad_token_id=mmtokenizer.eoa, |
|
logits_processor=LogitsProcessorList([ |
|
BlockTokenRangeProcessor(0, 32002), |
|
BlockTokenRangeProcessor(32016, 32016) |
|
]), |
|
guidance_scale=guidance_scale, |
|
use_cache=True, |
|
top_k=50, |
|
num_beams=1 |
|
) |
|
|
|
if output_seq[0][-1].item() != mmtokenizer.eoa: |
|
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(device) |
|
output_seq = torch.cat((output_seq, tensor_eoa), dim=1) |
|
|
|
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1) if i > 1 else output_seq |
|
|
|
|
|
ids = raw_output[0].cpu().numpy() |
|
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist() |
|
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist() |
|
|
|
vocals, instrumentals = [], [] |
|
for i in range(len(soa_idx)): |
|
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]] |
|
if codec_ids[0] == 32016: |
|
codec_ids = codec_ids[1:] |
|
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)] |
|
vocals.append(codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])) |
|
instrumentals.append(codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])) |
|
|
|
vocals = np.concatenate(vocals, axis=1) |
|
instrumentals = np.concatenate(instrumentals, axis=1) |
|
|
|
|
|
decoded_vocals = codec_model.decode(torch.as_tensor(vocals.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)).cpu().squeeze(0) |
|
decoded_instrumentals = codec_model.decode(torch.as_tensor(instrumentals.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)).cpu().squeeze(0) |
|
|
|
mixed_audio = (decoded_vocals + decoded_instrumentals) / 2 |
|
mixed_audio_np = mixed_audio.detach().numpy() |
|
mixed_audio_int16 = (mixed_audio_np * 32767).astype(np.int16) |
|
|
|
|
|
return (16000, mixed_audio_int16) |
|
|
|
@spaces.GPU(duration=120) |
|
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=10): |
|
try: |
|
return generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments, max_new_tokens=max_new_tokens) |
|
except Exception as e: |
|
gr.Warning("An Error Occurred: " + str(e)) |
|
return None |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation") |
|
gr.HTML(""" |
|
<div style="display:flex;column-gap:4px;"> |
|
<a href="https://github.com/multimodal-art-projection/YuE"> |
|
<img src='https://img.shields.io/badge/GitHub-Repo-blue'> |
|
</a> |
|
<a href="https://map-yue.github.io"> |
|
<img src='https://img.shields.io/badge/Project-Page-green'> |
|
</a> |
|
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true"> |
|
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space"> |
|
</a> |
|
</div> |
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
genre_txt = gr.Textbox(label="Genre") |
|
lyrics_txt = gr.Textbox(label="Lyrics") |
|
|
|
with gr.Column(): |
|
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True) |
|
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=5, |
|
interactive=True) |
|
submit_btn = gr.Button("Submit") |
|
music_out = gr.Audio(label="Audio Result") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gr.Examples( |
|
examples=[ |
|
[ |
|
"female blues airy vocal bright vocal piano sad romantic guitar jazz", |
|
"""[verse] |
|
In the quiet of the evening, shadows start to fall |
|
Whispers of the night wind echo through the hall |
|
Lost within the silence, I hear your gentle voice |
|
Guiding me back homeward, making my heart rejoice |
|
|
|
[chorus] |
|
Don't let this moment fade, hold me close tonight |
|
With you here beside me, everything's alright |
|
Can't imagine life alone, don't want to let you go |
|
Stay with me forever, let our love just flow |
|
""" |
|
], |
|
[ |
|
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", |
|
"""[verse] |
|
Woke up in the morning, sun is shining bright |
|
Chasing all my dreams, gotta get my mind right |
|
City lights are fading, but my vision's clear |
|
Got my team beside me, no room for fear |
|
Walking through the streets, beats inside my head |
|
Every step I take, closer to the bread |
|
People passing by, they don't understand |
|
Building up my future with my own two hands |
|
|
|
[chorus] |
|
This is my life, and I'm aiming for the top |
|
Never gonna quit, no, I'm never gonna stop |
|
Through the highs and lows, I'mma keep it real |
|
Living out my dreams with this mic and a deal |
|
""" |
|
] |
|
], |
|
inputs=[genre_txt, lyrics_txt], |
|
outputs=[music_out], |
|
cache_examples=True, |
|
cache_mode="eager", |
|
fn=infer |
|
) |
|
|
|
submit_btn.click( |
|
fn=infer, |
|
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens], |
|
outputs=[music_out] |
|
) |
|
|
|
demo.queue().launch(show_error=True) |