KingNish's picture
modified: app.py
5b10475
raw
history blame
12.5 kB
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import spaces
import sys
print("Installing flash-attn...")
# Install flash attention
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
from huggingface_hub import snapshot_download
# Create xcodec_mini_infer folder
folder_path = './xcodec_mini_infer'
# Create the folder if it doesn't exist
if not os.path.exists(folder_path):
os.mkdir(folder_path)
print(f"Folder created at: {folder_path}")
else:
print(f"Folder already exists at: {folder_path}")
snapshot_download(
repo_id = "m-a-p/xcodec_mini_infer",
local_dir = "./xcodec_mini_infer"
)
# Change to the "inference" directory
inference_dir = "."
try:
os.chdir(inference_dir)
print(f"Changed working directory to: {os.getcwd()}")
except FileNotFoundError:
print(f"Directory not found: {inference_dir}")
exit(1)
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import torch
from huggingface_hub import snapshot_download
import sys
import uuid
import numpy as np
import json
from omegaconf import OmegaConf
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
from tqdm import tqdm
from einops import rearrange
import time
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
import re
# Configuration Constants
MAX_NEW_TOKENS = 3000
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL_NAME = "m-a-p/YuE-s1-7B-anneal-en-cot"
CODEC_CONFIG_PATH = './xcodec_mini_infer/final_ckpt/config.yaml'
CODEC_CKPT_PATH = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
# Global Initialization
is_shared_ui = "innova-ai/YuE-music-generator-demo" in os.environ.get('SPACE_ID', '')
# Preload models and components
def load_models():
print("Initializing models...")
# Load main model
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
).to(DEVICE).eval()
return model
# Preload all models and components
model = load_models()
# Audio processing cache
resampler_cache = {}
def get_resampler(orig_freq, new_freq):
key = (orig_freq, new_freq)
if key not in resampler_cache:
resampler_cache[key] = Resample(orig_freq=orig_freq, new_freq=new_freq).to(DEVICE)
return resampler_cache[key]
def load_audio_mono(filepath, sampling_rate=16000):
audio, sr = torchaudio.load(filepath)
audio = torch.mean(audio, dim=0, keepdim=True).to(DEVICE)
if sr != sampling_rate:
resampler = get_resampler(sr, sampling_rate)
audio = resampler(audio)
return audio
@spaces.GPU(duration=120)
def generate_music(
genre_txt=None,
lyrics_txt=None,
max_new_tokens=100,
run_n_segments=2,
use_audio_prompt=False,
audio_prompt_path="",
prompt_start_time=0.0,
prompt_end_time=30.0,
output_dir="./output",
keep_intermediate=False,
rescale=False,
):
# Load tokenizer
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
# Precompute token IDs
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
# Load codec model
model_config = OmegaConf.load(CODEC_CONFIG_PATH)
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(DEVICE)
parameter_dict = torch.load(CODEC_CKPT_PATH, map_location='cpu')
codec_model.load_state_dict(parameter_dict['codec_model'])
codec_model.eval()
# Initialize codec tools
codectool = CodecManipulator("xcodec", 0, 1)
# Create output directories once
os.makedirs(output_dir, exist_ok=True)
stage1_output_dir = os.path.join(output_dir, "stage1")
os.makedirs(stage1_output_dir, exist_ok=True)
# Process inputs
genres = genre_txt.strip()
lyrics = split_lyrics(lyrics_txt+"\n")
full_lyrics = "\n".join(lyrics)
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] + lyrics
random_id = uuid.uuid4()
# Audio prompt processing
audio_prompt_codec_ids = []
if use_audio_prompt:
if not audio_prompt_path:
raise FileNotFoundError("Audio prompt path required when using audio prompt!")
audio_prompt = load_audio_mono(audio_prompt_path)
with torch.inference_mode():
raw_codes = codec_model.encode(audio_prompt.unsqueeze(0), target_bw=0.5)
raw_codes = raw_codes.transpose(0, 1).cpu().numpy().astype(np.int16)
code_ids = codectool.npy2ids(raw_codes[0])
audio_prompt_codec = code_ids[int(prompt_start_time*50):int(prompt_end_time*50)]
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
# Generation loop optimization
run_n_segments = min(run_n_segments+1, len(lyrics))
output_seq = None
with torch.inference_mode():
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
if i == 0: continue # Skip system prompt
# Prepare prompt
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
guidance_scale = 1.5 if i <= 1 else 1.2
if i == 1:
prompt_ids = mmtokenizer.tokenize(prompt_texts[0])
if use_audio_prompt:
prompt_ids += mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
prompt_ids += start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
else:
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
# Process input sequence
prompt_ids = torch.tensor(prompt_ids, device=DEVICE).unsqueeze(0)
input_ids = torch.cat([output_seq, prompt_ids], dim=1) if i > 1 else prompt_ids
# Generate sequence
output_seq = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
min_new_tokens=100,
do_sample=True,
top_p=0.93,
temperature=1.0,
repetition_penalty=1.2,
eos_token_id=mmtokenizer.eoa,
pad_token_id=mmtokenizer.eoa,
logits_processor=LogitsProcessorList([
BlockTokenRangeProcessor(0, 32002),
BlockTokenRangeProcessor(32016, 32016)
]),
guidance_scale=guidance_scale,
)
# Post-processing optimization
ids = output_seq[0].cpu().numpy()
soa_idx = np.where(ids == mmtokenizer.soa)[0]
eoa_idx = np.where(ids == mmtokenizer.eoa)[0]
# Vectorized audio processing
vocals, instrumentals = process_audio_segments(ids, soa_idx, eoa_idx, codectool)
# Save and mix audio
return save_and_mix_audio(vocals, instrumentals, genres, random_id, output_dir)
def process_audio_segments(ids, soa_idx, eoa_idx, codectool):
vocals, instrumentals = [], []
range_begin = 1 if len(soa_idx) > len(eoa_idx) else 0
for i in range(range_begin, len(soa_idx)):
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
codec_ids = codec_ids[:2 * (len(codec_ids) // 2)]
# Vectorized processing
arr = rearrange(codec_ids, "(n b) -> b n", b=2)
vocals.append(codectool.ids2npy(arr[0]))
instrumentals.append(codectool.ids2npy(arr[1]))
return np.concatenate(vocals, axis=1), np.concatenate(instrumentals, axis=1)
def save_and_mix_audio(vocals, instrumentals, genres, random_id, output_dir):
# Save directly to memory buffers
vocal_buf = torch.as_tensor(vocals.astype(np.int16), device=DEVICE)
inst_buf = torch.as_tensor(instrumentals.astype(np.int16), device=DEVICE)
with torch.inference_mode():
vocal_wav = codec_model.decode(vocal_buf.unsqueeze(0).permute(1, 0, 2))
inst_wav = codec_model.decode(inst_buf.unsqueeze(0).permute(1, 0, 2))
# Mix directly in GPU memory
mixed = (vocal_wav + inst_wav) / 2
mixed = mixed.squeeze(0).cpu().numpy()
# Save final output
output_path = os.path.join(output_dir, f"mixed_{genres}_{random_id}.mp3")
sf.write(output_path, mixed.T, 16000)
return output_path
# Gradio
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/multimodal-art-projection/YuE">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://map-yue.github.io">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
</div>
""")
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(label="Genre")
lyrics_txt = gr.Textbox(label="Lyrics")
with gr.Column():
if is_shared_ui:
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Max New Tokens", info="100 tokens equals 1 second long music", minimum=100, maximum="3000", step=100, value=500, interactive=True) # increase it after testing
else:
num_segments = gr.Number(label="Number of Song Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Max New Tokens", minimum=500, maximum="24000", step=500, value=3000, interactive=True)
submit_btn = gr.Button("Submit")
music_out = gr.Audio(label="Audio Result")
gr.Examples(
examples = [
[
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
"""[verse]
In the quiet of the evening, shadows start to fall
Whispers of the night wind echo through the hall
Lost within the silence, I hear your gentle voice
Guiding me back homeward, making my heart rejoice
[chorus]
Don't let this moment fade, hold me close tonight
With you here beside me, everything's alright
Can't imagine life alone, don't want to let you go
Stay with me forever, let our love just flow
"""
],
[
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
"""[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands
[chorus]
This is my life, and I'm aiming for the top
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
"""
]
],
inputs = [genre_txt, lyrics_txt],
outputs = [music_out],
cache_examples = True,
cache_mode="eager",
fn=generate_music
)
submit_btn.click(
fn = generate_music,
inputs = [genre_txt, lyrics_txt, num_segments, max_new_tokens],
outputs = [music_out]
)
demo.queue().launch(show_api=False, show_error=True)