|
import gradio as gr |
|
import subprocess |
|
import os |
|
import shutil |
|
import tempfile |
|
import spaces |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList |
|
import torch |
|
|
|
is_shared_ui = True if "innova-ai/YuE-music-generator-demo" in os.environ['SPACE_ID'] else False |
|
|
|
|
|
def install_flash_attn(): |
|
try: |
|
print("Installing flash-attn...") |
|
|
|
subprocess.run( |
|
"pip install flash-attn --no-build-isolation", |
|
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, |
|
shell=True, |
|
) |
|
print("flash-attn installed successfully!") |
|
except subprocess.CalledProcessError as e: |
|
print(f"Failed to install flash-attn: {e}") |
|
exit(1) |
|
|
|
|
|
install_flash_attn() |
|
|
|
from huggingface_hub import snapshot_download |
|
|
|
|
|
folder_path = './xcodec_mini_infer' |
|
|
|
|
|
if not os.path.exists(folder_path): |
|
os.mkdir(folder_path) |
|
print(f"Folder created at: {folder_path}") |
|
else: |
|
print(f"Folder already exists at: {folder_path}") |
|
|
|
snapshot_download( |
|
repo_id = "m-a-p/xcodec_mini_infer", |
|
local_dir = "./xcodec_mini_infer" |
|
) |
|
|
|
|
|
import sys |
|
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer')) |
|
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec')) |
|
|
|
|
|
import os |
|
import sys |
|
import torch |
|
import numpy as np |
|
import json |
|
import re |
|
import uuid |
|
import gradio as gr |
|
from tqdm import tqdm |
|
from omegaconf import OmegaConf |
|
import torchaudio |
|
from torchaudio.transforms import Resample |
|
import soundfile as sf |
|
from einops import rearrange |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList |
|
from models.soundstream_hubert_new import SoundStream |
|
from vocoder import build_codec_model, process_audio |
|
from post_process_audio import replace_low_freq_with_energy_matched |
|
|
|
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer')) |
|
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec')) |
|
from codecmanipulator import CodecManipulator |
|
from mmtokenizer import _MMSentencePieceTokenizer |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
print("Loading language model...") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"m-a-p/YuE-s1-7B-anneal-en-cot", |
|
torch_dtype=torch.float16, |
|
attn_implementation="flash_attention_2", |
|
).to(device) |
|
model.eval() |
|
|
|
|
|
print("Loading tokenizers...") |
|
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") |
|
codectool = CodecManipulator("xcodec", 0, 1) |
|
|
|
|
|
print("Loading codec models...") |
|
model_config = OmegaConf.load('./xcodec_mini_infer/final_ckpt/config.yaml') |
|
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device) |
|
parameter_dict = torch.load('./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', map_location='cpu') |
|
codec_model.load_state_dict(parameter_dict['codec_model']) |
|
codec_model.to(device) |
|
codec_model.eval() |
|
|
|
|
|
print("Loading vocoders...") |
|
vocal_decoder, inst_decoder = build_codec_model( |
|
'./xcodec_mini_infer/decoders/config.yaml', |
|
'./xcodec_mini_infer/decoders/decoder_131000.pth', |
|
'./xcodec_mini_infer/decoders/decoder_151000.pth' |
|
) |
|
|
|
class BlockTokenRangeProcessor(LogitsProcessor): |
|
def __init__(self, start_id, end_id): |
|
self.blocked_token_ids = list(range(start_id, end_id)) |
|
|
|
def __call__(self, input_ids, scores): |
|
scores[:, self.blocked_token_ids] = -float("inf") |
|
return scores |
|
|
|
def split_lyrics(lyrics): |
|
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)" |
|
segments = re.findall(pattern, lyrics, re.DOTALL) |
|
return [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments] |
|
|
|
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
limit = 0.99 |
|
max_val = wav.abs().max() |
|
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit) |
|
torchaudio.save(path, wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16) |
|
|
|
@spaces.GPU(duration=150) |
|
def run_inference(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=2000): |
|
try: |
|
|
|
output_dir = tempfile.mkdtemp() |
|
stage1_output_dir = os.path.join(output_dir, "stage1") |
|
os.makedirs(stage1_output_dir, exist_ok=True) |
|
|
|
|
|
structured_lyrics = split_lyrics(lyrics_txt_content) |
|
full_lyrics = "\n".join(structured_lyrics) |
|
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genre_txt_content}\n{full_lyrics}"] + structured_lyrics |
|
|
|
|
|
top_p = 0.93 |
|
temperature = 1.0 |
|
repetition_penalty = 1.2 |
|
start_of_segment = mmtokenizer.tokenize('[start_of_segment]') |
|
end_of_segment = mmtokenizer.tokenize('[end_of_segment]') |
|
run_n_segments = min(num_segments + 1, len(structured_lyrics)) |
|
|
|
|
|
raw_output = None |
|
for i in tqdm(range(1, run_n_segments)): |
|
section_text = prompt_texts[i].replace('[start_of_segment]', '').replace('[end_of_segment]', '') |
|
guidance_scale = 1.5 if i <= 1 else 1.2 |
|
prompt_ids = start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids |
|
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device) |
|
|
|
input_ids = prompt_ids if i == 1 else torch.cat([raw_output, prompt_ids], dim=1) |
|
if input_ids.shape[-1] > 16384 - max_new_tokens - 1: |
|
input_ids = input_ids[:, -(16384 - max_new_tokens - 1):] |
|
|
|
with torch.no_grad(): |
|
output_seq = model.generate( |
|
input_ids=input_ids, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
top_p=top_p, |
|
temperature=temperature, |
|
repetition_penalty=repetition_penalty, |
|
eos_token_id=mmtokenizer.eoa, |
|
pad_token_id=mmtokenizer.eoa, |
|
logits_processor=LogitsProcessorList([ |
|
BlockTokenRangeProcessor(0, 32002), |
|
BlockTokenRangeProcessor(32016, 32016) |
|
]), |
|
guidance_scale=guidance_scale, |
|
) |
|
|
|
raw_output = output_seq if i == 1 else torch.cat([raw_output, output_seq[:, input_ids.shape[-1]:]], dim=1) |
|
|
|
|
|
ids = raw_output[0].cpu().numpy() |
|
soa_idx = np.where(ids == mmtokenizer.soa)[0] |
|
eoa_idx = np.where(ids == mmtokenizer.eoa)[0] |
|
vocals, instrumentals = [], [] |
|
|
|
for i in range(len(soa_idx)): |
|
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]] |
|
codec_ids = codec_ids[:2 * (len(codec_ids) // 2)] |
|
vocals.append(codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])) |
|
instrumentals.append(codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])) |
|
|
|
|
|
vocals = np.concatenate(vocals, axis=1) |
|
instrumentals = np.concatenate(instrumentals, axis=1) |
|
|
|
with torch.no_grad(): |
|
vocal_audio = codec_model.decode(torch.tensor(vocals.astype(np.int16)).long().unsqueeze(0).permute(1, 0, 2).to(device)) |
|
inst_audio = codec_model.decode(torch.tensor(instrumentals.astype(np.int16)).long().unsqueeze(0).permute(1, 0, 2).to(device)) |
|
|
|
|
|
final_audio = (vocal_audio.cpu().squeeze() + inst_audio.cpu().squeeze()) / 2 |
|
output_path = os.path.join(output_dir, "final_output.wav") |
|
save_audio(final_audio.unsqueeze(0), output_path, 16000) |
|
|
|
return output_path |
|
|
|
except Exception as e: |
|
print(f"Error during inference: {str(e)}") |
|
raise gr.Error(f"Generation failed: {str(e)}") |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# YuE Music Generator") |
|
with gr.Row(): |
|
with gr.Column(): |
|
genre_txt = gr.Textbox(label="Genre Tags", placeholder="e.g., female vocal, jazz, piano") |
|
lyrics_txt = gr.Textbox(label="Lyrics", lines=10, placeholder="Enter lyrics with sections like [verse], [chorus]") |
|
num_segments = gr.Slider(1, 10, value=2, label="Number of Segments") |
|
max_tokens = gr.Slider(500, 3000, value=2000, label="Max Tokens") |
|
btn = gr.Button("Generate Music") |
|
with gr.Column(): |
|
audio_out = gr.Audio(label="Generated Music") |
|
|
|
examples = gr.Examples( |
|
examples=[ |
|
["female blues airy vocal bright vocal piano sad romantic guitar jazz", |
|
"""[verse] |
|
In the quiet of the evening, shadows start to fall |
|
Whispers of the night wind echo through the hall |
|
Lost within the silence, I hear your gentle voice |
|
Guiding me back homeward, making my heart rejoice |
|
|
|
[chorus] |
|
Don't let this moment fade, hold me close tonight |
|
With you here beside me, everything's alright |
|
Can't imagine life alone, don't want to let you go |
|
Stay with me forever, let our love just flow"""], |
|
["rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", |
|
"""[verse] |
|
Woke up in the morning, sun is shining bright |
|
Chasing all my dreams, gotta get my mind right |
|
City lights are fading, but my vision's clear |
|
Got my team beside me, no room for fear"""] |
|
], |
|
inputs=[genre_txt, lyrics_txt], |
|
outputs=audio_out |
|
) |
|
|
|
btn.click( |
|
fn=run_inference, |
|
inputs=[genre_txt, lyrics_txt, num_segments, max_tokens], |
|
outputs=audio_out |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |