deepseek modified
Browse files
app.py
CHANGED
@@ -49,83 +49,65 @@ import sys
|
|
49 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
|
50 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
|
51 |
|
52 |
-
|
|
|
|
|
|
|
53 |
import numpy as np
|
54 |
import json
|
|
|
|
|
|
|
|
|
55 |
from omegaconf import OmegaConf
|
56 |
import torchaudio
|
57 |
from torchaudio.transforms import Resample
|
58 |
import soundfile as sf
|
59 |
-
|
60 |
-
import uuid
|
61 |
-
from tqdm import tqdm
|
62 |
from einops import rearrange
|
63 |
-
from codecmanipulator import CodecManipulator
|
64 |
-
from mmtokenizer import _MMSentencePieceTokenizer
|
65 |
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
|
66 |
-
import glob
|
67 |
-
import time
|
68 |
-
import copy
|
69 |
-
from collections import Counter
|
70 |
from models.soundstream_hubert_new import SoundStream
|
71 |
from vocoder import build_codec_model, process_audio
|
72 |
from post_process_audio import replace_low_freq_with_energy_matched
|
73 |
-
import re
|
74 |
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
#
|
77 |
-
|
78 |
-
# Model Configuration:
|
79 |
-
parser.add_argument("--stage1_model", type=str, default="m-a-p/YuE-s1-7B-anneal-en-cot", help="The model checkpoint path or identifier for the Stage 1 model.")
|
80 |
-
parser.add_argument("--max_new_tokens", type=int, default=3000, help="The maximum number of new tokens to generate in one pass during text generation.")
|
81 |
-
parser.add_argument("--run_n_segments", type=int, default=2, help="The number of segments to process during the generation.")
|
82 |
-
# Prompt
|
83 |
-
parser.add_argument("--genre_txt", type=str, default="", help="The file path to a text file containing genre tags that describe the musical style or characteristics (e.g., instrumental, genre, mood, vocal timbre, vocal gender). This is used as part of the generation prompt.") # Modified: removed required=True and using default=""
|
84 |
-
parser.add_argument("--lyrics_txt", type=str, default="", help="The file path to a text file containing the lyrics for the music generation. These lyrics will be processed and split into structured segments to guide the generation process.") # Modified: removed required=True and using default=""
|
85 |
-
parser.add_argument("--use_audio_prompt", action="store_true", help="If set, the model will use an audio file as a prompt during generation. The audio file should be specified using --audio_prompt_path.")
|
86 |
-
parser.add_argument("--audio_prompt_path", type=str, default="", help="The file path to an audio file to use as a reference prompt when --use_audio_prompt is enabled.")
|
87 |
-
parser.add_argument("--prompt_start_time", type=float, default=0.0, help="The start time in seconds to extract the audio prompt from the given audio file.")
|
88 |
-
parser.add_argument("--prompt_end_time", type=float, default=30.0, help="The end time in seconds to extract the audio prompt from the given audio file.")
|
89 |
-
# Output
|
90 |
-
parser.add_argument("--output_dir", type=str, default="./output", help="The directory where generated outputs will be saved.")
|
91 |
-
parser.add_argument("--keep_intermediate", action="store_true", help="If set, intermediate outputs will be saved during processing.")
|
92 |
-
parser.add_argument("--disable_offload_model", action="store_true", help="If set, the model will not be offloaded from the GPU to CPU after Stage 1 inference.")
|
93 |
-
parser.add_argument("--cuda_idx", type=int, default=0)
|
94 |
-
# Config for xcodec and upsampler
|
95 |
-
parser.add_argument('--basic_model_config', default='./xcodec_mini_infer/final_ckpt/config.yaml', help='YAML files for xcodec configurations.')
|
96 |
-
parser.add_argument('--resume_path', default='./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', help='Path to the xcodec checkpoint.')
|
97 |
-
parser.add_argument('--config_path', type=str, default='./xcodec_mini_infer/decoders/config.yaml', help='Path to Vocos config file.')
|
98 |
-
parser.add_argument('--vocal_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_131000.pth', help='Path to Vocos decoder weights.')
|
99 |
-
parser.add_argument('--inst_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_151000.pth', help='Path to Vocos decoder weights.')
|
100 |
-
parser.add_argument('-r', '--rescale', action='store_true', help='Rescale output to avoid clipping.')
|
101 |
-
|
102 |
-
|
103 |
-
args = parser.parse_args([]) # Modified: Pass empty list to parse_args to avoid command line parsing in Gradio
|
104 |
-
|
105 |
-
if args.use_audio_prompt and not args.audio_prompt_path:
|
106 |
-
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
|
107 |
-
model_name = args.stage1_model # Modified: Renamed 'model' to 'model_name' to avoid shadowing the loaded model later
|
108 |
-
cuda_idx = args.cuda_idx
|
109 |
-
max_new_tokens_config = args.max_new_tokens # Modified: Renamed 'max_new_tokens' to 'max_new_tokens_config' to avoid shadowing the Gradio input
|
110 |
-
stage1_output_dir = os.path.join(args.output_dir, f"stage1")
|
111 |
-
os.makedirs(stage1_output_dir, exist_ok=True)
|
112 |
-
|
113 |
-
# load tokenizer and model
|
114 |
-
device = torch.device(f"cuda:{cuda_idx}" if torch.cuda.is_available() else "cpu")
|
115 |
-
|
116 |
-
# Now you can use `device` to move your tensors or models to the GPU (if available)
|
117 |
-
print(f"Using device: {device}")
|
118 |
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
|
|
|
|
|
|
121 |
codectool = CodecManipulator("xcodec", 0, 1)
|
122 |
-
|
|
|
|
|
|
|
123 |
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
|
124 |
-
parameter_dict = torch.load(
|
125 |
codec_model.load_state_dict(parameter_dict['codec_model'])
|
126 |
codec_model.to(device)
|
127 |
codec_model.eval()
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
class BlockTokenRangeProcessor(LogitsProcessor):
|
130 |
def __init__(self, start_id, end_id):
|
131 |
self.blocked_token_ids = list(range(start_id, end_id))
|
@@ -134,325 +116,118 @@ class BlockTokenRangeProcessor(LogitsProcessor):
|
|
134 |
scores[:, self.blocked_token_ids] = -float("inf")
|
135 |
return scores
|
136 |
|
137 |
-
def load_audio_mono(filepath, sampling_rate=16000):
|
138 |
-
audio, sr = torchaudio.load(filepath)
|
139 |
-
# Convert to mono
|
140 |
-
audio = torch.mean(audio, dim=0, keepdim=True)
|
141 |
-
# Resample if needed
|
142 |
-
if sr != sampling_rate:
|
143 |
-
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
|
144 |
-
audio = resampler(audio)
|
145 |
-
return audio
|
146 |
-
|
147 |
def split_lyrics(lyrics):
|
148 |
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
|
149 |
segments = re.findall(pattern, lyrics, re.DOTALL)
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
if
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
|
209 |
-
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids
|
210 |
-
# Use window slicing in case output sequence exceeds the context of model
|
211 |
-
max_context = 16384-max_new_tokens_config-1 # Modified: Use max_new_tokens_config
|
212 |
-
if input_ids.shape[-1] > max_context:
|
213 |
-
print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
|
214 |
-
input_ids = input_ids[:, -(max_context):]
|
215 |
-
with torch.no_grad():
|
216 |
-
output_seq = model.generate(
|
217 |
-
input_ids=input_ids,
|
218 |
-
max_new_tokens=max_new_tokens_run, # Modified: Use max_new_tokens_run
|
219 |
-
min_new_tokens=100,
|
220 |
-
do_sample=True,
|
221 |
-
top_p=top_p,
|
222 |
-
temperature=temperature,
|
223 |
-
repetition_penalty=repetition_penalty,
|
224 |
-
eos_token_id=mmtokenizer.eoa,
|
225 |
-
pad_token_id=mmtokenizer.eoa,
|
226 |
-
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
|
227 |
-
guidance_scale=guidance_scale,
|
228 |
)
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
for i in range(range_begin, len(soa_idx)):
|
249 |
-
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
|
250 |
-
if codec_ids[0] == 32016:
|
251 |
-
codec_ids = codec_ids[1:]
|
252 |
-
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
|
253 |
-
vocals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[0])
|
254 |
-
vocals.append(vocals_ids)
|
255 |
-
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[1])
|
256 |
-
instrumentals.append(instrumentals_ids)
|
257 |
-
vocals = np.concatenate(vocals, axis=1)
|
258 |
-
instrumentals = np.concatenate(instrumentals, axis=1)
|
259 |
-
vocal_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens_run}_vocal_{random_id}".replace('.', '@')+'.npy') # Modified: Use max_new_tokens_run in filename
|
260 |
-
inst_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens_run}_instrumental_{random_id}".replace('.', '@')+'.npy') # Modified: Use max_new_tokens_run in filename
|
261 |
-
np.save(vocal_save_path, vocals)
|
262 |
-
np.save(inst_save_path, instrumentals)
|
263 |
-
stage1_output_set_local.append(vocal_save_path)
|
264 |
-
stage1_output_set_local.append(inst_save_path)
|
265 |
-
|
266 |
-
|
267 |
-
# offload model - Removed offloading for gradio integration to keep model loaded
|
268 |
-
# if not args.disable_offload_model:
|
269 |
-
# model.cpu()
|
270 |
-
# del model
|
271 |
-
# torch.cuda.empty_cache()
|
272 |
-
|
273 |
-
print("Converting to Audio...")
|
274 |
-
|
275 |
-
# convert audio tokens to audio
|
276 |
-
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
|
277 |
-
folder_path = os.path.dirname(path)
|
278 |
-
if not os.path.exists(folder_path):
|
279 |
-
os.makedirs(folder_path)
|
280 |
-
limit = 0.99
|
281 |
-
max_val = wav.abs().max()
|
282 |
-
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
|
283 |
-
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
|
284 |
-
# reconstruct tracks
|
285 |
-
recons_output_dir = os.path.join(args.output_dir, "recons")
|
286 |
-
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
|
287 |
-
os.makedirs(recons_mix_dir, exist_ok=True)
|
288 |
-
tracks = []
|
289 |
-
for npy in stage1_output_set_local: # Modified: Use stage1_output_set_local
|
290 |
-
codec_result = np.load(npy)
|
291 |
-
decodec_rlt=[]
|
292 |
with torch.no_grad():
|
293 |
-
|
294 |
-
|
295 |
-
decodec_rlt.append(torch.as_tensor(decoded_waveform))
|
296 |
-
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
|
297 |
-
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
|
298 |
-
tracks.append(save_path)
|
299 |
-
save_audio(decodec_rlt, save_path, 16000)
|
300 |
-
# mix tracks
|
301 |
-
for inst_path in tracks:
|
302 |
-
try:
|
303 |
-
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
|
304 |
-
and 'instrumental' in inst_path:
|
305 |
-
# find pair
|
306 |
-
vocal_path = inst_path.replace('instrumental', 'vocal')
|
307 |
-
if not os.path.exists(vocal_path):
|
308 |
-
continue
|
309 |
-
# mix
|
310 |
-
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
|
311 |
-
vocal_stem, sr = sf.read(inst_path)
|
312 |
-
instrumental_stem, _ = sf.read(vocal_path)
|
313 |
-
mix_stem = (vocal_stem + instrumental_stem) / 1
|
314 |
-
sf.write(recons_mix, mix_stem, sr)
|
315 |
-
except Exception as e:
|
316 |
-
print(e)
|
317 |
-
|
318 |
-
# vocoder to upsample audios
|
319 |
-
vocal_decoder, inst_decoder = build_codec_model(args.config_path, args.vocal_decoder_path, args.inst_decoder_path)
|
320 |
-
vocoder_output_dir = os.path.join(args.output_dir, 'vocoder')
|
321 |
-
vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems')
|
322 |
-
vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix')
|
323 |
-
os.makedirs(vocoder_mix_dir, exist_ok=True)
|
324 |
-
os.makedirs(vocoder_stems_dir, exist_ok=True)
|
325 |
-
|
326 |
-
instrumental_output = None # Initialize outside try block
|
327 |
-
vocal_output = None # Initialize outside try block
|
328 |
-
recons_mix_path = "" # Initialize outside try block
|
329 |
-
|
330 |
-
|
331 |
-
for npy in stage1_output_set_local: # Modified: Use stage1_output_set_local
|
332 |
-
if 'instrumental' in npy:
|
333 |
-
# Process instrumental
|
334 |
-
instrumental_output = process_audio(
|
335 |
-
npy,
|
336 |
-
os.path.join(vocoder_stems_dir, 'instrumental.mp3'),
|
337 |
-
args.rescale,
|
338 |
-
args,
|
339 |
-
inst_decoder,
|
340 |
-
codec_model
|
341 |
-
)
|
342 |
-
else:
|
343 |
-
# Process vocal
|
344 |
-
vocal_output = process_audio(
|
345 |
-
npy,
|
346 |
-
os.path.join(vocoder_stems_dir, 'vocal.mp3'),
|
347 |
-
args.rescale,
|
348 |
-
args,
|
349 |
-
vocal_decoder,
|
350 |
-
codec_model
|
351 |
-
)
|
352 |
-
# mix tracks
|
353 |
-
try:
|
354 |
-
mix_output = instrumental_output + vocal_output
|
355 |
-
recons_mix_path_temp = os.path.join(recons_mix_dir, os.path.basename(recons_mix)) # Use recons_mix from previous step
|
356 |
-
save_audio(mix_output, recons_mix_path_temp, 44100, args.rescale)
|
357 |
-
print(f"Created mix: {recons_mix_path_temp}")
|
358 |
-
recons_mix_path = recons_mix_path_temp # Assign to outer scope variable
|
359 |
-
except RuntimeError as e:
|
360 |
-
print(e)
|
361 |
-
print(f"mix {recons_mix_path} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}")
|
362 |
-
|
363 |
-
# Post process
|
364 |
-
final_output_path = os.path.join(args.output_dir, os.path.basename(recons_mix_path)) # Use recons_mix_path from previous step
|
365 |
-
replace_low_freq_with_energy_matched(
|
366 |
-
a_file=recons_mix_path, # 16kHz # Use recons_mix_path
|
367 |
-
b_file=recons_mix_path_temp, # 48kHz # Use recons_mix_path_temp
|
368 |
-
c_file=final_output_path,
|
369 |
-
cutoff_freq=5500.0
|
370 |
-
)
|
371 |
-
print("All process Done")
|
372 |
-
return final_output_path # Modified: Return the final output audio path
|
373 |
|
|
|
|
|
|
|
|
|
374 |
|
375 |
-
|
376 |
-
model = AutoModelForCausalLM.from_pretrained( # Load model here for Gradio scope
|
377 |
-
"m-a-p/YuE-s1-7B-anneal-en-cot",
|
378 |
-
torch_dtype=torch.float16,
|
379 |
-
attn_implementation="flash_attention_2", # To enable flashattn, you have to install flash-attn
|
380 |
-
).to(device).eval() # Modified: Load model globally for Gradio to access
|
381 |
-
|
382 |
-
def empty_output_folder(output_dir):
|
383 |
-
# List all files in the output directory
|
384 |
-
files = os.listdir(output_dir)
|
385 |
-
|
386 |
-
# Iterate over the files and remove them
|
387 |
-
for file in files:
|
388 |
-
file_path = os.path.join(output_dir, file)
|
389 |
-
try:
|
390 |
-
if os.path.isdir(file_path):
|
391 |
-
# If it's a directory, remove it recursively
|
392 |
-
shutil.rmtree(file_path)
|
393 |
-
else:
|
394 |
-
# If it's a file, delete it
|
395 |
-
os.remove(file_path)
|
396 |
-
except Exception as e:
|
397 |
-
print(f"Error deleting file {file_path}: {e}")
|
398 |
-
|
399 |
-
@spaces.GPU(duration=120)
|
400 |
-
def infer_gradio(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=200): # Modified: Renamed infer to infer_gradio to avoid conflict
|
401 |
-
|
402 |
-
# Ensure the output folder exists
|
403 |
-
output_dir = "./output"
|
404 |
-
os.makedirs(output_dir, exist_ok=True)
|
405 |
-
print(f"Output folder ensured at: {output_dir}")
|
406 |
-
|
407 |
-
empty_output_folder(output_dir)
|
408 |
-
|
409 |
-
# Call the generation function directly
|
410 |
-
output_audio_path = generate_music(genre_txt_content, lyrics_txt_content, int(num_segments), int(max_new_tokens)) # Modified: Call generate_music and pass num_segments and max_new_tokens as int
|
411 |
-
|
412 |
-
if output_audio_path and os.path.exists(output_audio_path):
|
413 |
-
print("Generated audio file:", output_audio_path)
|
414 |
-
return output_audio_path
|
415 |
-
else:
|
416 |
-
print("No audio file generated or path is invalid.")
|
417 |
-
return None
|
418 |
|
|
|
|
|
|
|
419 |
|
|
|
420 |
with gr.Blocks() as demo:
|
421 |
-
|
422 |
-
|
423 |
-
gr.
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
with gr.Row():
|
437 |
-
with gr.Column():
|
438 |
-
genre_txt = gr.Textbox(label="Genre")
|
439 |
-
lyrics_txt = gr.Textbox(label="Lyrics")
|
440 |
-
|
441 |
-
with gr.Column():
|
442 |
-
if is_shared_ui:
|
443 |
-
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
|
444 |
-
max_new_tokens = gr.Slider(label="Max New Tokens", minimum=500, maximum="3000", step=500, value=500, interactive=True) # increase it after testing
|
445 |
-
else:
|
446 |
-
num_segments = gr.Number(label="Number of Song Segments", value=2, interactive=True)
|
447 |
-
max_new_tokens = gr.Slider(label="Max New Tokens", minimum=500, maximum="24000", step=500, value=3000, interactive=True)
|
448 |
-
submit_btn = gr.Button("Submit")
|
449 |
-
music_out = gr.Audio(label="Audio Result")
|
450 |
-
|
451 |
-
gr.Examples(
|
452 |
-
examples = [
|
453 |
-
[
|
454 |
-
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
|
455 |
-
"""[verse]
|
456 |
In the quiet of the evening, shadows start to fall
|
457 |
Whispers of the night wind echo through the hall
|
458 |
Lost within the silence, I hear your gentle voice
|
@@ -462,39 +237,23 @@ Guiding me back homeward, making my heart rejoice
|
|
462 |
Don't let this moment fade, hold me close tonight
|
463 |
With you here beside me, everything's alright
|
464 |
Can't imagine life alone, don't want to let you go
|
465 |
-
Stay with me forever, let our love just flow
|
466 |
-
|
467 |
-
|
468 |
-
[
|
469 |
-
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
|
470 |
-
"""[verse]
|
471 |
Woke up in the morning, sun is shining bright
|
472 |
Chasing all my dreams, gotta get my mind right
|
473 |
City lights are fading, but my vision's clear
|
474 |
-
Got my team beside me, no room for fear
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
[chorus]
|
481 |
-
This is my life, and I'm aiming for the top
|
482 |
-
Never gonna quit, no, I'm never gonna stop
|
483 |
-
Through the highs and lows, I'mma keep it real
|
484 |
-
Living out my dreams with this mic and a deal
|
485 |
-
"""
|
486 |
-
]
|
487 |
-
],
|
488 |
-
inputs = [genre_txt, lyrics_txt],
|
489 |
-
outputs = [music_out],
|
490 |
-
cache_examples = False,
|
491 |
-
# cache_mode="lazy",
|
492 |
-
fn=infer_gradio # Modified: Use infer_gradio
|
493 |
-
)
|
494 |
|
495 |
-
|
496 |
-
fn
|
497 |
-
inputs
|
498 |
-
outputs
|
499 |
)
|
500 |
-
|
|
|
|
|
|
49 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
|
50 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
|
51 |
|
52 |
+
|
53 |
+
import os
|
54 |
+
import sys
|
55 |
+
import torch
|
56 |
import numpy as np
|
57 |
import json
|
58 |
+
import re
|
59 |
+
import uuid
|
60 |
+
import gradio as gr
|
61 |
+
from tqdm import tqdm
|
62 |
from omegaconf import OmegaConf
|
63 |
import torchaudio
|
64 |
from torchaudio.transforms import Resample
|
65 |
import soundfile as sf
|
|
|
|
|
|
|
66 |
from einops import rearrange
|
|
|
|
|
67 |
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
|
|
|
|
|
|
|
|
|
68 |
from models.soundstream_hubert_new import SoundStream
|
69 |
from vocoder import build_codec_model, process_audio
|
70 |
from post_process_audio import replace_low_freq_with_energy_matched
|
|
|
71 |
|
72 |
+
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
|
73 |
+
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
|
74 |
+
from codecmanipulator import CodecManipulator
|
75 |
+
from mmtokenizer import _MMSentencePieceTokenizer
|
76 |
|
77 |
+
# Load models once at startup
|
78 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# Load language model
|
81 |
+
print("Loading language model...")
|
82 |
+
model = AutoModelForCausalLM.from_pretrained(
|
83 |
+
"m-a-p/YuE-s1-7B-anneal-en-cot",
|
84 |
+
torch_dtype=torch.float16,
|
85 |
+
attn_implementation="flash_attention_2",
|
86 |
+
).to(device)
|
87 |
+
model.eval()
|
88 |
|
89 |
+
# Load tokenizers and codec tools
|
90 |
+
print("Loading tokenizers...")
|
91 |
+
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
|
92 |
codectool = CodecManipulator("xcodec", 0, 1)
|
93 |
+
|
94 |
+
# Load codec models
|
95 |
+
print("Loading codec models...")
|
96 |
+
model_config = OmegaConf.load('./xcodec_mini_infer/final_ckpt/config.yaml')
|
97 |
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
|
98 |
+
parameter_dict = torch.load('./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', map_location='cpu')
|
99 |
codec_model.load_state_dict(parameter_dict['codec_model'])
|
100 |
codec_model.to(device)
|
101 |
codec_model.eval()
|
102 |
|
103 |
+
# Load vocoders
|
104 |
+
print("Loading vocoders...")
|
105 |
+
vocal_decoder, inst_decoder = build_codec_model(
|
106 |
+
'./xcodec_mini_infer/decoders/config.yaml',
|
107 |
+
'./xcodec_mini_infer/decoders/decoder_131000.pth',
|
108 |
+
'./xcodec_mini_infer/decoders/decoder_151000.pth'
|
109 |
+
)
|
110 |
+
|
111 |
class BlockTokenRangeProcessor(LogitsProcessor):
|
112 |
def __init__(self, start_id, end_id):
|
113 |
self.blocked_token_ids = list(range(start_id, end_id))
|
|
|
116 |
scores[:, self.blocked_token_ids] = -float("inf")
|
117 |
return scores
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
def split_lyrics(lyrics):
|
120 |
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
|
121 |
segments = re.findall(pattern, lyrics, re.DOTALL)
|
122 |
+
return [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
|
123 |
+
|
124 |
+
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
|
125 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
126 |
+
limit = 0.99
|
127 |
+
max_val = wav.abs().max()
|
128 |
+
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
|
129 |
+
torchaudio.save(path, wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
|
130 |
+
|
131 |
+
@spaces.GPU(duration=150)
|
132 |
+
def run_inference(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=2000):
|
133 |
+
try:
|
134 |
+
# Create temporary output directory
|
135 |
+
output_dir = tempfile.mkdtemp()
|
136 |
+
stage1_output_dir = os.path.join(output_dir, "stage1")
|
137 |
+
os.makedirs(stage1_output_dir, exist_ok=True)
|
138 |
+
|
139 |
+
# Process inputs
|
140 |
+
structured_lyrics = split_lyrics(lyrics_txt_content)
|
141 |
+
full_lyrics = "\n".join(structured_lyrics)
|
142 |
+
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genre_txt_content}\n{full_lyrics}"] + structured_lyrics
|
143 |
+
|
144 |
+
# Generation parameters
|
145 |
+
top_p = 0.93
|
146 |
+
temperature = 1.0
|
147 |
+
repetition_penalty = 1.2
|
148 |
+
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
|
149 |
+
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
|
150 |
+
run_n_segments = min(num_segments + 1, len(structured_lyrics))
|
151 |
+
|
152 |
+
# Generate tokens
|
153 |
+
raw_output = None
|
154 |
+
for i in tqdm(range(1, run_n_segments)):
|
155 |
+
section_text = prompt_texts[i].replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
156 |
+
guidance_scale = 1.5 if i <= 1 else 1.2
|
157 |
+
prompt_ids = start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
|
158 |
+
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
|
159 |
+
|
160 |
+
input_ids = prompt_ids if i == 1 else torch.cat([raw_output, prompt_ids], dim=1)
|
161 |
+
if input_ids.shape[-1] > 16384 - max_new_tokens - 1:
|
162 |
+
input_ids = input_ids[:, -(16384 - max_new_tokens - 1):]
|
163 |
+
|
164 |
+
with torch.no_grad():
|
165 |
+
output_seq = model.generate(
|
166 |
+
input_ids=input_ids,
|
167 |
+
max_new_tokens=max_new_tokens,
|
168 |
+
do_sample=True,
|
169 |
+
top_p=top_p,
|
170 |
+
temperature=temperature,
|
171 |
+
repetition_penalty=repetition_penalty,
|
172 |
+
eos_token_id=mmtokenizer.eoa,
|
173 |
+
pad_token_id=mmtokenizer.eoa,
|
174 |
+
logits_processor=LogitsProcessorList([
|
175 |
+
BlockTokenRangeProcessor(0, 32002),
|
176 |
+
BlockTokenRangeProcessor(32016, 32016)
|
177 |
+
]),
|
178 |
+
guidance_scale=guidance_scale,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
)
|
180 |
+
|
181 |
+
raw_output = output_seq if i == 1 else torch.cat([raw_output, output_seq[:, input_ids.shape[-1]:]], dim=1)
|
182 |
+
|
183 |
+
# Process generated tokens
|
184 |
+
ids = raw_output[0].cpu().numpy()
|
185 |
+
soa_idx = np.where(ids == mmtokenizer.soa)[0]
|
186 |
+
eoa_idx = np.where(ids == mmtokenizer.eoa)[0]
|
187 |
+
vocals, instrumentals = [], []
|
188 |
+
|
189 |
+
for i in range(len(soa_idx)):
|
190 |
+
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
|
191 |
+
codec_ids = codec_ids[:2 * (len(codec_ids) // 2)]
|
192 |
+
vocals.append(codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0]))
|
193 |
+
instrumentals.append(codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1]))
|
194 |
+
|
195 |
+
# Generate audio
|
196 |
+
vocals = np.concatenate(vocals, axis=1)
|
197 |
+
instrumentals = np.concatenate(instrumentals, axis=1)
|
198 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
with torch.no_grad():
|
200 |
+
vocal_audio = codec_model.decode(torch.tensor(vocals.astype(np.int16)).long().unsqueeze(0).permute(1, 0, 2).to(device))
|
201 |
+
inst_audio = codec_model.decode(torch.tensor(instrumentals.astype(np.int16)).long().unsqueeze(0).permute(1, 0, 2).to(device))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
+
# Mix and save audio
|
204 |
+
final_audio = (vocal_audio.cpu().squeeze() + inst_audio.cpu().squeeze()) / 2
|
205 |
+
output_path = os.path.join(output_dir, "final_output.wav")
|
206 |
+
save_audio(final_audio.unsqueeze(0), output_path, 16000)
|
207 |
|
208 |
+
return output_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
+
except Exception as e:
|
211 |
+
print(f"Error during inference: {str(e)}")
|
212 |
+
raise gr.Error(f"Generation failed: {str(e)}")
|
213 |
|
214 |
+
# Gradio UI
|
215 |
with gr.Blocks() as demo:
|
216 |
+
gr.Markdown("# YuE Music Generator")
|
217 |
+
with gr.Row():
|
218 |
+
with gr.Column():
|
219 |
+
genre_txt = gr.Textbox(label="Genre Tags", placeholder="e.g., female vocal, jazz, piano")
|
220 |
+
lyrics_txt = gr.Textbox(label="Lyrics", lines=10, placeholder="Enter lyrics with sections like [verse], [chorus]")
|
221 |
+
num_segments = gr.Slider(1, 10, value=2, label="Number of Segments")
|
222 |
+
max_tokens = gr.Slider(500, 3000, value=2000, label="Max Tokens")
|
223 |
+
btn = gr.Button("Generate Music")
|
224 |
+
with gr.Column():
|
225 |
+
audio_out = gr.Audio(label="Generated Music")
|
226 |
+
|
227 |
+
examples = gr.Examples(
|
228 |
+
examples=[
|
229 |
+
["female blues airy vocal bright vocal piano sad romantic guitar jazz",
|
230 |
+
"""[verse]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
In the quiet of the evening, shadows start to fall
|
232 |
Whispers of the night wind echo through the hall
|
233 |
Lost within the silence, I hear your gentle voice
|
|
|
237 |
Don't let this moment fade, hold me close tonight
|
238 |
With you here beside me, everything's alright
|
239 |
Can't imagine life alone, don't want to let you go
|
240 |
+
Stay with me forever, let our love just flow"""],
|
241 |
+
["rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
|
242 |
+
"""[verse]
|
|
|
|
|
|
|
243 |
Woke up in the morning, sun is shining bright
|
244 |
Chasing all my dreams, gotta get my mind right
|
245 |
City lights are fading, but my vision's clear
|
246 |
+
Got my team beside me, no room for fear"""]
|
247 |
+
],
|
248 |
+
inputs=[genre_txt, lyrics_txt],
|
249 |
+
outputs=audio_out
|
250 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
+
btn.click(
|
253 |
+
fn=run_inference,
|
254 |
+
inputs=[genre_txt, lyrics_txt, num_segments, max_tokens],
|
255 |
+
outputs=audio_out
|
256 |
)
|
257 |
+
|
258 |
+
if __name__ == "__main__":
|
259 |
+
demo.launch()
|