prithivMLmods commited on
Commit
190cc51
·
verified ·
1 Parent(s): 75761b4

Create files/demo.txt

Browse files
Files changed (1) hide show
  1. files/demo.txt +285 -0
files/demo.txt ADDED
@@ -0,0 +1,285 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ import os
3
+ import random
4
+ import uuid
5
+ import gradio as gr
6
+ import numpy as np
7
+ from PIL import Image
8
+ import spaces
9
+ import torch
10
+ from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
11
+ from typing import Tuple
12
+
13
+ css = '''
14
+ .gradio-container{max-width: 570px !important}
15
+ h1{text-align:center}
16
+ footer {
17
+ visibility: hidden
18
+ }
19
+ '''
20
+
21
+ DESCRIPTIONXX = """
22
+ ## REALVISXL V5 + LIGHTNING ⚡
23
+ """
24
+
25
+ examples = [
26
+ "Illustration of A starry night camp in the mountains, 4k, cinematic --ar 85:128 --v 6.0 --style raw",
27
+ "A delicious ceviche cheesecake slice, 4k, octane render, ray tracing, Ultra-High-Definition"
28
+ ]
29
+
30
+ MODEL_OPTIONS = {
31
+ "REALVISXL V5.0": "SG161222/RealVisXL_V5.0",
32
+ # "LIGHTNING V5.0": "SG161222/RealVisXL_V5.0_Lightning",
33
+ }
34
+
35
+ MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
36
+ USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
37
+ ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
38
+ BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
39
+
40
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
41
+
42
+ style_list = [
43
+ {
44
+ "name": "3840 x 2160",
45
+ "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
46
+ "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
47
+ },
48
+ {
49
+ "name": "2560 x 1440",
50
+ "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
51
+ "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
52
+ },
53
+ {
54
+ "name": "HD+",
55
+ "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
56
+ "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
57
+ },
58
+ {
59
+ "name": "Style Zero",
60
+ "prompt": "{prompt}",
61
+ "negative_prompt": "",
62
+ },
63
+ ]
64
+
65
+ styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
66
+ DEFAULT_STYLE_NAME = "3840 x 2160"
67
+ STYLE_NAMES = list(styles.keys())
68
+
69
+ def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
70
+ if style_name in styles:
71
+ p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
72
+ else:
73
+ p, n = styles[DEFAULT_STYLE_NAME]
74
+
75
+ if not negative:
76
+ negative = ""
77
+ return p.replace("{prompt}", positive), n + negative
78
+
79
+ def load_and_prepare_model(model_id):
80
+ pipe = StableDiffusionXLPipeline.from_pretrained(
81
+ model_id,
82
+ torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
83
+ use_safetensors=True,
84
+ add_watermarker=False,
85
+ ).to(device)
86
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
87
+
88
+ if USE_TORCH_COMPILE:
89
+ pipe.compile()
90
+
91
+ if ENABLE_CPU_OFFLOAD:
92
+ pipe.enable_model_cpu_offload()
93
+
94
+ return pipe
95
+
96
+ # Preload and compile both models
97
+ models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
98
+
99
+ MAX_SEED = np.iinfo(np.int32).max
100
+
101
+ def save_image(img):
102
+ unique_name = str(uuid.uuid4()) + ".png"
103
+ img.save(unique_name)
104
+ return unique_name
105
+
106
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
107
+ if randomize_seed:
108
+ seed = random.randint(0, MAX_SEED)
109
+ return seed
110
+
111
+ @spaces.GPU(duration=60, enable_queue=True)
112
+ def generate(
113
+ model_choice: str,
114
+ prompt: str,
115
+ negative_prompt: str = "",
116
+ use_negative_prompt: bool = False,
117
+ style_selection: str = DEFAULT_STYLE_NAME,
118
+ seed: int = 1,
119
+ width: int = 1024,
120
+ height: int = 1024,
121
+ guidance_scale: float = 3,
122
+ num_inference_steps: int = 25,
123
+ randomize_seed: bool = False,
124
+ use_resolution_binning: bool = True,
125
+ num_images: int = 1,
126
+ progress=gr.Progress(track_tqdm=True),
127
+ ):
128
+ global models
129
+ pipe = models[model_choice]
130
+
131
+ seed = int(randomize_seed_fn(seed, randomize_seed))
132
+ generator = torch.Generator(device=device).manual_seed(seed)
133
+
134
+ prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
135
+
136
+ options = {
137
+ "prompt": [prompt] * num_images,
138
+ "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
139
+ "width": width,
140
+ "height": height,
141
+ "guidance_scale": guidance_scale,
142
+ "num_inference_steps": num_inference_steps,
143
+ "generator": generator,
144
+ "output_type": "pil",
145
+ }
146
+
147
+ if use_resolution_binning:
148
+ options["use_resolution_binning"] = True
149
+
150
+ images = []
151
+ for i in range(0, num_images, BATCH_SIZE):
152
+ batch_options = options.copy()
153
+ batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
154
+ if "negative_prompt" in batch_options:
155
+ batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
156
+ images.extend(pipe(**batch_options).images)
157
+
158
+ image_paths = [save_image(img) for img in images]
159
+ return image_paths, seed
160
+
161
+ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
162
+ gr.Markdown(DESCRIPTIONXX)
163
+ with gr.Row():
164
+ prompt = gr.Text(
165
+ label="Prompt",
166
+ show_label=False,
167
+ max_lines=1,
168
+ placeholder="Enter your prompt",
169
+ container=False,
170
+ )
171
+ run_button = gr.Button("Run", scale=0)
172
+ result = gr.Gallery(label="Result", columns=1, show_label=False)
173
+
174
+ with gr.Row():
175
+ model_choice = gr.Dropdown(
176
+ label="Model Selection🔻",
177
+ choices=list(MODEL_OPTIONS.keys()),
178
+ value="REALVISXL V5.0"
179
+ )
180
+
181
+ with gr.Accordion("Advanced options", open=False, visible=True):
182
+ style_selection = gr.Radio(
183
+ show_label=True,
184
+ container=True,
185
+ interactive=True,
186
+ choices=STYLE_NAMES,
187
+ value=DEFAULT_STYLE_NAME,
188
+ label="Quality Style",
189
+ )
190
+ num_images = gr.Slider(
191
+ label="Number of Images",
192
+ minimum=1,
193
+ maximum=5,
194
+ step=1,
195
+ value=1,
196
+ )
197
+ with gr.Row():
198
+ with gr.Column(scale=1):
199
+ use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
200
+ negative_prompt = gr.Text(
201
+ label="Negative prompt",
202
+ max_lines=5,
203
+ lines=4,
204
+ placeholder="Enter a negative prompt",
205
+ value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
206
+ visible=True,
207
+ )
208
+ seed = gr.Slider(
209
+ label="Seed",
210
+ minimum=0,
211
+ maximum=MAX_SEED,
212
+ step=1,
213
+ value=0,
214
+ )
215
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
216
+ with gr.Row():
217
+ width = gr.Slider(
218
+ label="Width",
219
+ minimum=512,
220
+ maximum=MAX_IMAGE_SIZE,
221
+ step=64,
222
+ value=1024,
223
+ )
224
+ height = gr.Slider(
225
+ label="Height",
226
+ minimum=512,
227
+ maximum=MAX_IMAGE_SIZE,
228
+ step=64,
229
+ value=1024,
230
+ )
231
+ with gr.Row():
232
+ guidance_scale = gr.Slider(
233
+ label="Guidance Scale",
234
+ minimum=0.1,
235
+ maximum=6,
236
+ step=0.1,
237
+ value=3.0,
238
+ )
239
+ num_inference_steps = gr.Slider(
240
+ label="Number of inference steps",
241
+ minimum=1,
242
+ maximum=60,
243
+ step=1,
244
+ value=32,
245
+ )
246
+
247
+ gr.Examples(
248
+ examples=examples,
249
+ inputs=prompt,
250
+ cache_examples=False
251
+ )
252
+
253
+ use_negative_prompt.change(
254
+ fn=lambda x: gr.update(visible=x),
255
+ inputs=use_negative_prompt,
256
+ outputs=negative_prompt,
257
+ api_name=False,
258
+ )
259
+
260
+ gr.on(
261
+ triggers=[
262
+ prompt.submit,
263
+ negative_prompt.submit,
264
+ run_button.click,
265
+ ],
266
+ fn=generate,
267
+ inputs=[
268
+ model_choice,
269
+ prompt,
270
+ negative_prompt,
271
+ use_negative_prompt,
272
+ style_selection,
273
+ seed,
274
+ width,
275
+ height,
276
+ guidance_scale,
277
+ num_inference_steps,
278
+ randomize_seed,
279
+ gr.State(value=True),
280
+ num_images,
281
+ ],
282
+ outputs=[result, seed],
283
+ )
284
+
285
+ demo.queue(concurrency_count=3).launch(debug=True)